Spatiotemporal coupling and decoupling of gene transcription with DNA replication origins during embryogenesis in C. elegans

  1. Ehsan Pourkarimi
  2. James M Bellush
  3. Iestyn Whitehouse  Is a corresponding author
  1. Memorial Sloan Kettering Cancer Center, United States

Abstract

The primary task of developing embryos is genome replication, yet how DNA replication is integrated with the profound cellular changes that occur through development is largely unknown. Using an approach to map DNA replication at high resolution in C. elegans, we show that replication origins are marked with specific histone modifications that define gene enhancers. We demonstrate that the level of enhancer associated modifications scale with the efficiency at which the origin is utilized. By mapping replication origins at different developmental stages, we show that the positions and activity of origins is largely invariant through embryogenesis. Contrary to expectation, we find that replication origins are specified prior to the broad onset of zygotic transcription, yet when transcription initiates it does so in close proximity to the pre-defined replication origins. Transcription and DNA replication origins are correlated, but the association breaks down when embryonic cell division ceases. Collectively, our data indicate that replication origins are fundamental organizers and regulators of gene activity through embryonic development.

Article and author information

Author details

  1. Ehsan Pourkarimi

    Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9598-3465
  2. James M Bellush

    Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Iestyn Whitehouse

    Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    whitehoi@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0385-3116

Funding

National Institutes of Health (GM102253)

  • Iestyn Whitehouse

Memorial Sloan-Kettering Cancer Center (P30CA008748)

  • Iestyn Whitehouse

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael R Botchan, University of California, Berkeley, United States

Version history

  1. Received: September 21, 2016
  2. Accepted: December 22, 2016
  3. Accepted Manuscript published: December 23, 2016 (version 1)
  4. Accepted Manuscript updated: December 28, 2016 (version 2)
  5. Version of Record published: January 9, 2017 (version 3)

Copyright

© 2016, Pourkarimi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,937
    views
  • 584
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ehsan Pourkarimi
  2. James M Bellush
  3. Iestyn Whitehouse
(2016)
Spatiotemporal coupling and decoupling of gene transcription with DNA replication origins during embryogenesis in C. elegans
eLife 5:e21728.
https://doi.org/10.7554/eLife.21728

Share this article

https://doi.org/10.7554/eLife.21728

Further reading

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.

    1. Developmental Biology
    2. Physics of Living Systems
    Raphaël Clément
    Insight

    Geometric criteria can be used to assess whether cell intercalation is active or passive during the convergent extension of tissue.