Coincidence detection and bi-directional transmembrane signaling control a bacterial second messenger receptor

  1. Richard B Cooley  Is a corresponding author
  2. John P O'Donnell
  3. Holger Sondermann  Is a corresponding author
  1. Oregon State University, United States
  2. Cornell University, United States

Abstract

The second messenger c-di-GMP regulates biofilm formation, a physiological adaptation process in bacteria, via a widely conserved signaling node comprising a prototypical transmembrane receptor for c-di-GMP, LapD, and a cognate periplasmic protease, LapG. Previously, we reported a structure-function study of a soluble LapD-LapG complex, establishing conformational changes in the receptor that lead to c-di-GMP-dependent protease recruitment (Chatterjee et al., 2014). This work also revealed a basal affinity of c-di-GMP-unbound receptor for LapG, the relevance of which remained enigmatic. Here, we elucidate the structural basis of coincidence detection that relies on both c-di-GMP and LapG binding to LapD for receptor activation. The data indicate that the high-affinity state for LapG relies on the formation of a receptor dimer-of-dimers, rather than a simple conformational change within dimeric LapD. The proposed mechanism provides a rationale of how external proteins can regulate receptor function and may also apply to c-di-GMP-metabolizing enzymes akin to LapD.

Article and author information

Author details

  1. Richard B Cooley

    Department of Biochemistry and Biophysics, Oregon State University, Corvallis, United States
    For correspondence
    cooleyr@oregonstate.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. John P O'Donnell

    Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Holger Sondermann

    Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, United States
    For correspondence
    hs293@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2211-6234

Funding

National Institute of Allergy and Infectious Diseases (R01-AI097307)

  • Holger Sondermann

National Institute of General Medical Sciences (F32-GM108440)

  • Richard B Cooley

National Institute of General Medical Sciences (T32-GM008500)

  • John P O'Donnell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jon Clardy, Harvard Medical School, United States

Version history

  1. Received: September 27, 2016
  2. Accepted: December 20, 2016
  3. Accepted Manuscript published: December 21, 2016 (version 1)
  4. Version of Record published: January 12, 2017 (version 2)

Copyright

© 2016, Cooley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,410
    views
  • 325
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Richard B Cooley
  2. John P O'Donnell
  3. Holger Sondermann
(2016)
Coincidence detection and bi-directional transmembrane signaling control a bacterial second messenger receptor
eLife 5:e21848.
https://doi.org/10.7554/eLife.21848

Share this article

https://doi.org/10.7554/eLife.21848

Further reading

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.