1. Shiyou Zhu
  2. Wensheng Wei  Is a corresponding author
  1. School of Life Sciences, Peking University, China
  2. Peking University, China

Since the human genome sequence was completed in 2003, genome-wide screening has become a popular method for quickly associating specific genes with their roles in cells. More recently, the CRISPR-Cas9 system has become the dominant tool for genome-editing (Jinek et al., 2012; Cong et al., 2013; Mali et al., 2013) and it has subsequently been adapted to make highly effective genetic screening platforms (Shalem et al., 2014; Zhou et al., 2014).

The CRISPR-Cas9 system is derived from the methods used by certain bacteria to identify and cut up foreign genetic material (Barrangou et al., 2007). To edit the genome, specially designed RNA molecules guide a nuclease enzyme called Cas9 to the location of interest in the DNA sequence; the Cas9 enzyme then cuts the DNA at this position. A mutant form of Cas9 that is unable to cut DNA can also be used to generate libraries of single guide RNAs (sgRNAs) that target regions around transcription start sites in the genome. By allowing researchers to either repress or activate gene expression – techniques that are known as CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa), respectively – these sgRNAs make it possible to carry out powerful genetic screens in mammalian cells (Gilbert et al., 2014; Konermann et al., 2015). Now, in eLife, Jonathan Weissman and colleagues at the University of California, San Francisco – including Max Horlbeck as first author – report that a new algorithm can predict the activity of sgRNAs more accurately than existing algorithms (Horlbeck et al., 2016a).

Many factors affect the ability of sgRNAs to activate or repress genes including the sequence, length and secondary structure of the sgRNA (Doench et al., 2014; Xu et al., 2015). Furthermore, the DNA in mammalian cells (and also in other eukaryotic cells) is packaged inside structures called nucleosomes, which make it difficult for the Cas9 enzyme to access the DNA (Hinz et al., 2015; Horlbeck et al., 2016b; Isaac et al., 2016). This is particularly important for CRISPRi and CRISPRa screens because the mutant Cas9 enzyme must stay bound to the DNA for extended periods of time. Horlbeck et al. therefore optimized the design of their sgRNAs to target DNA regions that were not packaged in nucleosomes and thus were more accessible to mutant Cas9.

To improve the CRISPRi and CRISPRa libraries that they had made previously (Gilbert et al., 2014), Horlbeck et al. analyzed data from 30 CRISPRi screens and 9 CRISPRa screens and defined “activity scores” for every sgRNA relative to the sgRNA with the strongest activity for each gene. They then used this information to make new CRISPRi and CRISPRa libraries that contained the ten most active sgRNAs for each gene.

The new human CRISPRi library was used to screen chronic myeloid leukemia K562 cells to identify genes that are essential for cell growth. Impressively, this library was able to identify about 10% more essential genes compared with the original CRISPRi library (Gilbert et al., 2014). Furthermore, a half-sized version of the new human CRISPRi library (with only the top five sgRNAs per gene) performed similarly to the full-sized version. This is reassuring because smaller libraries are easier to construct and use in screens. Similarly, Horlbeck et al. also demonstrated that the new human CRISPRa library outperformed the original one.

Horlbeck et al. found that, when used with the mutant form of Cas9, none of the CRISPRi libraries had toxic side effects like those observed with other approaches that use the active enzyme (Wang et al., 2015). This makes it possible to effectively identify genes, even if they show only slight differences in expression compared to negative controls.

To summarize, this study established an effective algorithm to predict the activity of sgRNAs based on the location of nucleosomes in the genome. Horlbeck et al. used this algorithm to generate new CRISPRi and CRISPRa libraries with much improved performance in genetic screens in humans and mice. It remains to be seen if the algorithm could be used to optimize other types of CRISPR screens, especially ones that use the normal Cas9 enzyme.

References

Article and author information

Author details

  1. Shiyou Zhu

    1. Biodynamic Optical Imaging Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
    2. Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Wensheng Wei

    1. Biodynamic Optical Imaging Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
    2. Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
    3. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    For correspondence
    wswei@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8053-2423

Publication history

  1. Version of Record published: November 3, 2016 (version 1)

Copyright

© 2016, Zhu et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,181
    views
  • 446
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shiyou Zhu
  2. Wensheng Wei
(2016)
Genetic Screening: Making better CRISPR libraries
eLife 5:e21863.
https://doi.org/10.7554/eLife.21863

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kenya Hitomi, Yoichiro Ishii, Bei-Wen Ying
    Research Article

    As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Taegon Chung, Iksoo Chang, Sangyeol Kim
    Research Article

    Locomotion is a fundamental behavior of Caenorhabditis elegans (C. elegans). Previous works on kinetic simulations of animals helped researchers understand the physical mechanisms of locomotion and the muscle-controlling principles of neuronal circuits as an actuator part. It has yet to be understood how C. elegans utilizes the frictional forces caused by the tension of its muscles to perform sequenced locomotive behaviors. Here, we present a two-dimensional rigid body chain model for the locomotion of C. elegans by developing Newtonian equations of motion for each body segment of C. elegans. Having accounted for friction-coefficients of the surrounding environment, elastic constants of C. elegans, and its kymogram from experiments, our kinetic model (ElegansBot) reproduced various locomotion of C. elegans such as, but not limited to, forward-backward-(omega turn)-forward locomotion constituting escaping behavior and delta-turn navigation. Additionally, ElegansBot precisely quantified the forces acting on each body segment of C. elegans to allow investigation of the force distribution. This model will facilitate our understanding of the detailed mechanism of various locomotive behaviors at any given friction-coefficients of the surrounding environment. Furthermore, as the model ensures the performance of realistic behavior, it can be used to research actuator-controller interaction between muscles and neuronal circuits.