Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1

  1. Fahad Rashid
  2. Paul D Harris
  3. Manal S Zaher
  4. Mohamed A Sobhy
  5. Luay I Joudeh
  6. Chunli Yan
  7. Hubert Piwonski
  8. Susan E Tsutakawa
  9. Ivaylo Ivanov
  10. John A Tainer
  11. Satoshi Habuchi
  12. Samir M Hamdan  Is a corresponding author
  1. King Abdullah University of Science and Technology, Saudi Arabia
  2. Georgia State University, United States
  3. Lawrence Berkeley National Laboratory, United States

Abstract

Human flap endonuclease 1 (FEN1) and related structure-specific 5'nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5'nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually 'locks' protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never misses cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability.

Article and author information

Author details

  1. Fahad Rashid

    Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  2. Paul D Harris

    Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  3. Manal S Zaher

    Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  4. Mohamed A Sobhy

    Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  5. Luay I Joudeh

    Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  6. Chunli Yan

    Department of Chemistry, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hubert Piwonski

    Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8666-3945
  8. Susan E Tsutakawa

    Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ivaylo Ivanov

    Department of Chemistry, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. John A Tainer

    Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Satoshi Habuchi

    Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  12. Samir M Hamdan

    Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    For correspondence
    samir.hamdan@kaust.edu.sa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5192-1852

Funding

King Abdullah University of Science and Technology (2201 CRG3)

  • Fahad Rashid
  • Paul D Harris
  • Manal S Zaher
  • Mohamed A Sobhy
  • Luay I Joudeh
  • Hubert Piwonski
  • John A Tainer
  • Satoshi Habuchi
  • Samir M Hamdan

National Science Foundation (MCB-1149521)

  • Chunli Yan
  • Ivaylo Ivanov

NIH Clinical Center (R01GM110387)

  • Chunli Yan
  • Ivaylo Ivanov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. James M Berger, Johns Hopkins University School of Medicine, United States

Version history

  1. Received: September 27, 2016
  2. Accepted: February 20, 2017
  3. Accepted Manuscript published: February 23, 2017 (version 1)
  4. Version of Record published: March 20, 2017 (version 2)

Copyright

© 2017, Rashid et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,413
    views
  • 769
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fahad Rashid
  2. Paul D Harris
  3. Manal S Zaher
  4. Mohamed A Sobhy
  5. Luay I Joudeh
  6. Chunli Yan
  7. Hubert Piwonski
  8. Susan E Tsutakawa
  9. Ivaylo Ivanov
  10. John A Tainer
  11. Satoshi Habuchi
  12. Samir M Hamdan
(2017)
Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1
eLife 6:e21884.
https://doi.org/10.7554/eLife.21884

Share this article

https://doi.org/10.7554/eLife.21884

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.