Peptidoglycan sensing by octopaminergic neurons modulates Drosophila oviposition

  1. C Leopold kurz
  2. Bernard Charroux
  3. Delphine Chaduli
  4. Annelise Viallat-Lieutaud
  5. Julien Royet  Is a corresponding author
  1. Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, France

Abstract

As infectious diseases pose a threat to host integrity, eukaryotes have evolved mechanisms to eliminate pathogens. In addition to develop strategies reducing infection, animals can engage in behaviours that lower the impact of the infection. The molecular mechanisms by which microbes impact host behaviour are not well understood. We demonstrate that bacterial infection of Drosophila females reduces oviposition and that peptidoglycan, the component that activates Drosophila antibacterial response, is also the elicitor of this behavioral change. We show that peptidoglycan regulates egg laying rate by activating NF-B signaling pathway in octopaminergic neurons and that, a dedicated peptidoglycan degrading enzyme acts in these neurons to buffer this behavioural response. This study shows that a unique ligand and signaling cascade are used in immune cells to mount an immune response and in neurons to control fly behavior following infection. This may represent a case of behavioural immunity.

Article and author information

Author details

  1. C Leopold kurz

    Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseilles, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Bernard Charroux

    Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Mraseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Delphine Chaduli

    Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Annelise Viallat-Lieutaud

    Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Mraseille, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Julien Royet

    Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseilles, France
    For correspondence
    julien.royet@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5671-4833

Funding

Centre National de la Recherche Scientifique (24567)

  • Julien Royet

Equipe Fondation pour la Recherche Médicale (DEQ20140329541)

  • Julien Royet

Investissements d'avenir-Labex INFORM (ANR-11-LABx-0054)

  • Julien Royet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Version history

  1. Received: September 29, 2016
  2. Accepted: February 26, 2017
  3. Accepted Manuscript published: March 7, 2017 (version 1)
  4. Version of Record published: March 24, 2017 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,754
    views
  • 725
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. C Leopold kurz
  2. Bernard Charroux
  3. Delphine Chaduli
  4. Annelise Viallat-Lieutaud
  5. Julien Royet
(2017)
Peptidoglycan sensing by octopaminergic neurons modulates Drosophila oviposition
eLife 6:e21937.
https://doi.org/10.7554/eLife.21937

Share this article

https://doi.org/10.7554/eLife.21937

Further reading

    1. Chromosomes and Gene Expression
    2. Immunology and Inflammation
    Rajan M Thomas, Matthew C Pahl ... Andrew D Wells
    Research Article

    Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.