p27Kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/Cortactin pathway

  1. Pauline Jeannot
  2. Ada Nowosad
  3. Renaud T Perchey
  4. Caroline Callot
  5. Evangeline Bennana
  6. Takanori Katsube
  7. Patrick Mayeux
  8. François Guillonneau
  9. Stéphane Manenti
  10. Arnaud Besson  Is a corresponding author
  1. INSERM, France
  2. National Institute of Radiological Sciences, Japan
  3. French Institute of Health and Medical Research, France

Abstract

p27Kip1 (p27) is a cyclin-CDK inhibitor and negative regulator of cell proliferation. p27 also controls other cellular processes including migration and cytoplasmic p27 can act as an oncogene. Furthermore, cytoplasmic p27 promotes invasion and metastasis, in part by promoting epithelial to mesenchymal transition. Herein, we find that p27 promotes cell invasion by binding to and regulating the activity of Cortactin, a critical regulator of invadopodia formation. p27 localizes to invadopodia and limits their number and activity. p27 promotes the interaction of Cortactin with PAK1. In turn, PAK1 promotes invadopodia turnover by phosphorylating Cortactin, and expression of Cortactin mutants for PAK-targeted sites abolishes p27's effect on invadopodia dynamics. Thus, in absence of p27, cells exhibit increased invadopodia stability due to impaired PAK1-Cortactin interaction, but their invasive capacity is reduced compared to wild-type cells. Overall, we find that p27 directly promotes cell invasion by facilitating invadopodia turnover via the Rac1/PAK1/Cortactin pathway.

Article and author information

Author details

  1. Pauline Jeannot

    Cancer Research Center of Toulouse, INSERM, Toulouse,, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Ada Nowosad

    Cancer Research Center of Toulouse, INSERM, Toulouse,, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Renaud T Perchey

    Cancer Research Center of Toulouse, INSERM, Toulouse,, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Caroline Callot

    Cancer Research Center of Toulouse, INSERM, Toulouse,, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Evangeline Bennana

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Takanori Katsube

    Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Patrick Mayeux

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. François Guillonneau

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Stéphane Manenti

    Cancer Research Center of Toulouse, INSERM, Toulouse,, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Arnaud Besson

    CRCT UMR 1037 INSERM-Universite Paul Sabatier, French Institute of Health and Medical Research, Toulouse cedex 1, France
    For correspondence
    arnaud.besson@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9599-3943

Funding

Ligue Nationale Contre le Cancer

  • Renaud T Perchey
  • Stéphane Manenti
  • Arnaud Besson

Ministere de l'enseignement superieur et de la recherche

  • Pauline Jeannot
  • Ada Nowosad

INSERM

  • Evangeline Bennana
  • Patrick Mayeux
  • François Guillonneau
  • Stéphane Manenti
  • Arnaud Besson

CNRS

  • Stéphane Manenti
  • Arnaud Besson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Roger J Davis, University of Massachusetts Medical School, United States

Version history

  1. Received: October 8, 2016
  2. Accepted: March 9, 2017
  3. Accepted Manuscript published: March 13, 2017 (version 1)
  4. Version of Record published: April 11, 2017 (version 2)

Copyright

© 2017, Jeannot et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,719
    views
  • 497
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pauline Jeannot
  2. Ada Nowosad
  3. Renaud T Perchey
  4. Caroline Callot
  5. Evangeline Bennana
  6. Takanori Katsube
  7. Patrick Mayeux
  8. François Guillonneau
  9. Stéphane Manenti
  10. Arnaud Besson
(2017)
p27Kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/Cortactin pathway
eLife 6:e22207.
https://doi.org/10.7554/eLife.22207

Share this article

https://doi.org/10.7554/eLife.22207

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Ting Zhang, Alisa Ambrodji ... Steven M Offer
    Research Article

    Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.

    1. Cancer Biology
    2. Epidemiology and Global Health
    Lijun Bian, Zhimin Ma ... Guangfu Jin
    Research Article

    Background:

    Age is the most important risk factor for cancer, but aging rates are heterogeneous across individuals. We explored a new measure of aging-Phenotypic Age (PhenoAge)-in the risk prediction of site-specific and overall cancer.

    Methods:

    Using Cox regression models, we examined the association of Phenotypic Age Acceleration (PhenoAgeAccel) with cancer incidence by genetic risk group among 374,463 participants from the UK Biobank. We generated PhenoAge using chronological age and nine biomarkers, PhenoAgeAccel after subtracting the effect of chronological age by regression residual, and an incidence-weighted overall cancer polygenic risk score (CPRS) based on 20 cancer site-specific polygenic risk scores (PRSs).

    Results:

    Compared with biologically younger participants, those older had a significantly higher risk of overall cancer, with hazard ratios (HRs) of 1.22 (95% confidence interval, 1.18–1.27) in men, and 1.26 (1.22–1.31) in women, respectively. A joint effect of genetic risk and PhenoAgeAccel was observed on overall cancer risk, with HRs of 2.29 (2.10–2.51) for men and 1.94 (1.78–2.11) for women with high genetic risk and older PhenoAge compared with those with low genetic risk and younger PhenoAge. PhenoAgeAccel was negatively associated with the number of healthy lifestyle factors (Beta = –1.01 in men, p<0.001; Beta = –0.98 in women, p<0.001).

    Conclusions:

    Within and across genetic risk groups, older PhenoAge was consistently related to an increased risk of incident cancer with adjustment for chronological age and the aging process could be retarded by adherence to a healthy lifestyle.

    Funding:

    This work was supported by the National Natural Science Foundation of China (82230110, 82125033, 82388102 to GJ; 82273714 to MZ); and the Excellent Youth Foundation of Jiangsu Province (BK20220100 to MZ).