Role of Tim17 in coupling the import motor to the translocation channel of the mitochondrial presequence translocase

  1. Keren Demishtein-Zohary
  2. Umut Günsel
  3. Milit Marom
  4. Rupa Banerjee
  5. Walter Neupert
  6. Abdussalam Azem  Is a corresponding author
  7. Dejana Mokranjac  Is a corresponding author
  1. Tel Aviv University, Israel
  2. Ludwig Maximilian University of Munich, Germany
  3. Max Planck Institute of Biochemistry, Germany

Abstract

The majority of mitochondrial proteins use N-terminal presequences for targeting to mitochondria and are translocated by the presequence translocase. During translocation, proteins, threaded through the channel in the inner membrane, are handed over to the import motor at the matrix face. Tim17 is an essential, membrane-embedded subunit of the translocase, however, its function is only poorly understood. Here, we functionally dissected its four predicted transmembrane (TM) segments. Mutations in TM1 and TM2 impaired the interaction of Tim17 with Tim23, component of the translocation channel, whereas mutations in TM3 compromised binding of the import motor. We identified residues in the matrix-facing region of Tim17 involved in binding of the import motor. Our results reveal functionally distinct roles of different regions of Tim17 and suggest how they may be involved in handing over the proteins, during their translocation into mitochondria, from the channel to the import motor of the presequence translocase.

Article and author information

Author details

  1. Keren Demishtein-Zohary

    Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Umut Günsel

    BMC-Physiological Chemistry, Ludwig Maximilian University of Munich, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Milit Marom

    Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Rupa Banerjee

    BMC-Physiological Chemistry, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Walter Neupert

    Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0571-4419
  6. Abdussalam Azem

    Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    azema@tauex.tau.ac.il
    Competing interests
    The authors declare that no competing interests exist.
  7. Dejana Mokranjac

    BMC-Physiological Chemistry, Ludwig Maximilian University of Munich, Martinsried, Germany
    For correspondence
    dejana.mokranjac@med.uni-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4005-6979

Funding

German-Israeli Foundation for Scientific Research and Development (GIF- 1012/08)

  • Walter Neupert
  • Abdussalam Azem
  • Dejana Mokranjac

Israel Science Foundation (ISF-1507/13)

  • Abdussalam Azem

Deutsche Forschungsgemeinschaft (MO1944/1-1)

  • Dejana Mokranjac

Deutscher Akademischer Austauschdienst

  • Rupa Banerjee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nikolaus Pfanner, University of Freiburg, Germany

Version history

  1. Received: October 26, 2016
  2. Accepted: February 6, 2017
  3. Accepted Manuscript published: February 6, 2017 (version 1)
  4. Version of Record published: February 14, 2017 (version 2)

Copyright

© 2017, Demishtein-Zohary et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,855
    views
  • 419
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Keren Demishtein-Zohary
  2. Umut Günsel
  3. Milit Marom
  4. Rupa Banerjee
  5. Walter Neupert
  6. Abdussalam Azem
  7. Dejana Mokranjac
(2017)
Role of Tim17 in coupling the import motor to the translocation channel of the mitochondrial presequence translocase
eLife 6:e22696.
https://doi.org/10.7554/eLife.22696

Share this article

https://doi.org/10.7554/eLife.22696

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.