Epigenetic regulation of lateralized fetal spinal gene expression underlies hemispheric asymmetries

  1. Sebastian Ocklenburg  Is a corresponding author
  2. Judith Schmitz
  3. Zahra Moinfar
  4. Dirk Moser
  5. Rena Klose
  6. Stephanie Lor
  7. Georg Kunz
  8. Martin Tegenthoff
  9. Pedro M Faustmann
  10. Clyde Francks
  11. Jörg T Epplen
  12. Robert Kumsta
  13. Onur Güntürkün
  1. Ruhr University Bochum, Germany
  2. St. Johannes Hospital, Germany
  3. University Hospital Bergmannsheil, Germany
  4. Max Planck Institute for Psycholinguistics, Netherlands

Abstract

Lateralization is a fundamental principle of nervous system organization but its molecular determinants are mostly unknown. In humans, asymmetric gene expression in the fetal cortex has been suggested as the molecular basis of handedness. However, human fetuses already show considerable asymmetries in arm movements before the motor cortex is functionally linked to the spinal cord, making it more likely that spinal gene expression asymmetries form the molecular basis of handedness. We analyzed genome-wide mRNA expression and DNA methylation in cervical and anterior thoracal spinal cord segments of five human fetuses and show development-dependent gene expression asymmetries. These gene expression asymmetries were epigenetically regulated by miRNA expression asymmetries in the TGF-β signaling pathway and lateralized methylation of CpG islands. Our findings suggest molecular mechanisms for epigenetic regulation within the spinal cord constitute the starting point for handedness, implying a fundamental shift in our understanding of the ontogenesis of hemispheric asymmetries in humans.

Article and author information

Author details

  1. Sebastian Ocklenburg

    Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
    For correspondence
    sebastian.ocklenburg@rub.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5882-3200
  2. Judith Schmitz

    Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Zahra Moinfar

    Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Dirk Moser

    Department of Genetic Psychology, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Rena Klose

    Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephanie Lor

    Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Georg Kunz

    Department of Obstetrics and Gynecology, St. Johannes Hospital, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Martin Tegenthoff

    Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Pedro M Faustmann

    Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Clyde Francks

    Department of Language and Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Jörg T Epplen

    Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Robert Kumsta

    Department of Genetic Psychology, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Onur Güntürkün

    Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (Gu227/16-1)

  • Onur Güntürkün

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Heidi Johansen-Berg, University of Oxford, United Kingdom

Ethics

Human subjects: The study was approved by the Ethics Committee of the Medical Faculty of the Ruhr-University Bochum (registration number 5056-14). All fetal tissue donors signed written informed consent

Version history

  1. Received: October 29, 2016
  2. Accepted: January 31, 2017
  3. Accepted Manuscript published: February 1, 2017 (version 1)
  4. Version of Record published: February 7, 2017 (version 2)

Copyright

© 2017, Ocklenburg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 36,591
    views
  • 2,152
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sebastian Ocklenburg
  2. Judith Schmitz
  3. Zahra Moinfar
  4. Dirk Moser
  5. Rena Klose
  6. Stephanie Lor
  7. Georg Kunz
  8. Martin Tegenthoff
  9. Pedro M Faustmann
  10. Clyde Francks
  11. Jörg T Epplen
  12. Robert Kumsta
  13. Onur Güntürkün
(2017)
Epigenetic regulation of lateralized fetal spinal gene expression underlies hemispheric asymmetries
eLife 6:e22784.
https://doi.org/10.7554/eLife.22784

Share this article

https://doi.org/10.7554/eLife.22784

Further reading

    1. Neuroscience
    Hao Li, Jingyu Feng ... Jufang He
    Research Article

    Cholecystokinin (CCK) is an essential modulator for neuroplasticity in sensory and emotional domains. Here, we investigated the role of CCK in motor learning using a single pellet reaching task in mice. Mice with a knockout of Cck gene (Cck−/−) or blockade of CCK-B receptor (CCKBR) showed defective motor learning ability; the success rate of retrieving reward remained at the baseline level compared to the wildtype mice with significantly increased success rate. We observed no long-term potentiation upon high-frequency stimulation in the motor cortex of Cck−/− mice, indicating a possible association between motor learning deficiency and neuroplasticity in the motor cortex. In vivo calcium imaging demonstrated that the deficiency of CCK signaling disrupted the refinement of population neuronal activity in the motor cortex during motor skill training. Anatomical tracing revealed direct projections from CCK-expressing neurons in the rhinal cortex to the motor cortex. Inactivation of the CCK neurons in the rhinal cortex that project to the motor cortex bilaterally using chemogenetic methods significantly suppressed motor learning, and intraperitoneal application of CCK4, a tetrapeptide CCK agonist, rescued the motor learning deficits of Cck−/− mice. In summary, our results suggest that CCK, which could be provided from the rhinal cortex, may surpport motor skill learning by modulating neuroplasticity in the motor cortex.

    1. Neuroscience
    Ivan Tomić, Paul M Bays
    Research Article

    Probing memory of a complex visual image within a few hundred milliseconds after its disappearance reveals significantly greater fidelity of recall than if the probe is delayed by as little as a second. Classically interpreted, the former taps into a detailed but rapidly decaying visual sensory or ‘iconic’ memory (IM), while the latter relies on capacity-limited but comparatively stable visual working memory (VWM). While iconic decay and VWM capacity have been extensively studied independently, currently no single framework quantitatively accounts for the dynamics of memory fidelity over these time scales. Here, we extend a stationary neural population model of VWM with a temporal dimension, incorporating rapid sensory-driven accumulation of activity encoding each visual feature in memory, and a slower accumulation of internal error that causes memorized features to randomly drift over time. Instead of facilitating read-out from an independent sensory store, an early cue benefits recall by lifting the effective limit on VWM signal strength imposed when multiple items compete for representation, allowing memory for the cued item to be supplemented with information from the decaying sensory trace. Empirical measurements of human recall dynamics validate these predictions while excluding alternative model architectures. A key conclusion is that differences in capacity classically thought to distinguish IM and VWM are in fact contingent upon a single resource-limited WM store.