Human cardiac fibroblasts adaptive responses to controlled combined mechanical strain and oxygen changes in vitro

  1. Giovanni Stefano Ugolini
  2. Andrea Pavesi
  3. Marco Rasponi
  4. Gianfranco Beniamino Fiore
  5. Roger Kamm
  6. Monica Soncini  Is a corresponding author
  1. Politecnico di Milano, Italy
  2. Agency for Science, Technology and Research, Singapore
  3. Singapore-MIT Alliance for Research and Technology, Singapore

Abstract

Upon cardiac pathological conditions such as ischemia, microenvironmental changes instruct a series of cellular responses that trigger cardiac fibroblasts-mediated tissue adaptation and inflammation. A comprehensive model of how early environmental changes may induce cardiac fibroblasts (CF) pathological responses is far from being elucidated, partly due to the lack of approaches involving complex and simultaneous environmental stimulation. Here, we provide a first analysis of human primary CF behavior by means of a multi-stimulus microdevice for combined application of cyclic mechanical strain and controlled oxygen tension. Our findings elucidate differential human CFs responses to different combinations of the above stimuli. Individual stimuli cause proliferative effects (PHH3+ mitotic cells, YAP translocation, PDGF secretion) or increase collagen presence. Interestingly, only the combination of hypoxia and a simulated loss of contractility (2% strain) is able to additionally induce increased CF release of inflammatory and pro-fibrotic cytokines and matrix metalloproteinases.

Article and author information

Author details

  1. Giovanni Stefano Ugolini

    Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrea Pavesi

    Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2777-1043
  3. Marco Rasponi

    Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Gianfranco Beniamino Fiore

    Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Roger Kamm

    Biosym IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Monica Soncini

    Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
    For correspondence
    monica.soncini@polimi.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8607-7196

Funding

No external funding was received for this work.

Reviewing Editor

  1. Gordana Vunjak-Novakovic, Columbia University, United States

Version history

  1. Received: November 8, 2016
  2. Accepted: March 17, 2017
  3. Accepted Manuscript published: March 18, 2017 (version 1)
  4. Accepted Manuscript updated: March 22, 2017 (version 2)
  5. Version of Record published: April 27, 2017 (version 3)

Copyright

© 2017, Ugolini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,752
    views
  • 480
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Giovanni Stefano Ugolini
  2. Andrea Pavesi
  3. Marco Rasponi
  4. Gianfranco Beniamino Fiore
  5. Roger Kamm
  6. Monica Soncini
(2017)
Human cardiac fibroblasts adaptive responses to controlled combined mechanical strain and oxygen changes in vitro
eLife 6:e22847.
https://doi.org/10.7554/eLife.22847

Share this article

https://doi.org/10.7554/eLife.22847

Further reading

    1. Medicine
    2. Neuroscience
    Matthew F Wipperman, Allen Z Lin ... Olivier Harari
    Tools and Resources

    Gait is impaired in musculoskeletal conditions, such as knee arthropathy. Gait analysis is used in clinical practice to inform diagnosis and to monitor disease progression or intervention response. However, clinical gait analysis relies on subjective visual observation of walking, as objective gait analysis has not been possible within clinical settings due to the expensive equipment, large-scale facilities, and highly trained staff required. Relatively low-cost wearable digital insoles may offer a solution to these challenges. In this work, we demonstrate how a digital insole measuring osteoarthritis-specific gait signatures yields similar results to the clinical gait-lab standard. To achieve this, we constructed a machine learning model, trained on force plate data collected in participants with knee arthropathy and controls. This model was highly predictive of force plate data from a validation set (area under the receiver operating characteristics curve [auROC] = 0.86; area under the precision-recall curve [auPR] = 0.90) and of a separate, independent digital insole dataset containing control and knee osteoarthritis subjects (auROC = 0.83; auPR = 0.86). After showing that digital insole derived gait characteristics are comparable to traditional gait measurements, we next showed that a single stride of raw sensor time series data could be accurately assigned to each subject, highlighting that individuals using digital insoles can be identified by their gait characteristics. This work provides a framework for a promising alternative to traditional clinical gait analysis methods, adds to the growing body of knowledge regarding wearable technology analytical pipelines, and supports clinical development of at-home gait assessments, with the potential to improve the ease, frequency, and depth of patient monitoring.

    1. Medicine
    Anika Shimonty, Fabrizio Pin ... Lynda F Bonewald
    Research Article

    Irisin, released from exercised muscle, has been shown to have beneficial effects on numerous tissues but its effects on bone are unclear. We found significant sex and genotype differences in bone from wildtype (WT) mice compared to mice lacking Fndc5 (knockout [KO]), with and without calcium deficiency. Despite their bone being indistinguishable from WT females, KO female mice were partially protected from osteocytic osteolysis and osteoclastic bone resorption when allowed to lactate or when placed on a low-calcium diet. Male KO mice have more but weaker bone compared to WT males, and when challenged with a low-calcium diet lost more bone than WT males. To begin to understand responsible molecular mechanisms, osteocyte transcriptomics was performed. Osteocytes from WT females had greater expression of genes associated with osteocytic osteolysis and osteoclastic bone resorption compared to WT males which had greater expression of genes associated with steroid and fatty acid metabolism. Few differences were observed between female KO and WT osteocytes, but with a low-calcium diet, the KO females had lower expression of genes responsible for osteocytic osteolysis and osteoclastic resorption than the WT females. Male KO osteocytes had lower expression of genes associated with steroid and fatty acid metabolism, but higher expression of genes associated with bone resorption compared to male WT. In conclusion, irisin plays a critical role in the development of the male but not the female skeleton and protects male but not female bone from calcium deficiency. We propose irisin ensures the survival of offspring by targeting the osteocyte to provide calcium in lactating females, a novel function for this myokine.