Folding behavior of a T-shaped, ribosome-binding translation enhancer implicated in a wide-spread conformational switch

  1. My-Tra Le  Is a corresponding author
  2. Wojciech K Kasprzak
  3. Taejin Kim
  4. Feng Gao
  5. Megan YL Young
  6. Xuefeng Yuan
  7. Bruce A Shapiro
  8. Joonil Seog
  9. Anne E Simon  Is a corresponding author
  1. University of Maryland, United States
  2. Leidos Biomedical Research, Inc., United States
  3. National Cancer Institute, United States
  4. College of Plant Protection, Shandong Agricultural University, China

Abstract

Turnip crinkle virus contains a T-shaped, ribosome-binding, translation enhancer (TSS) in its 3'UTR that serves as a hub for interactions throughout the region. The viral RNA-dependent RNA polymerase (RdRp) causes the TSS/surrounding region to undergo a conformational shift postulated to inhibit translation. Using optical tweezers (OT) and steered molecular dynamic simulations (SMD), we found that the unusual stability of pseudoknotted element H4a/Ψ3 required five upstream adenylates, and H4a/Ψ3 was necessary for cooperative association of two other hairpins (H5/H4b) in Mg2+. SMD recapitulated the TSS unfolding order in the absence of Mg2+, showed dependence of the resistance to pulling on the 3D orientation and gave structural insights into the measured contour lengths of the TSS structure elements. Adenylate mutations eliminated one-site RdRp binding to the 3'UTR, suggesting that RdRp binding to the adenylates disrupts H4a/Ψ3, leading to loss of H5/H4b interaction and promoting a conformational switch interrupting translation and promoting replication.

Article and author information

Author details

  1. My-Tra Le

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    For correspondence
    my.letra@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Wojciech K Kasprzak

    Basic Science Program, Leidos Biomedical Research, Inc., Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Taejin Kim

    RNA Biology Laboratory, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Feng Gao

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Pak, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Megan YL Young

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xuefeng Yuan

    Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Bruce A Shapiro

    RNA Biology Laboratory, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Joonil Seog

    Department of Materials Science and Engineering, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Anne E Simon

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    For correspondence
    simona@umd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6121-0704

Funding

National Science Foundation (MCB-1411836)

  • My-Tra Le
  • Feng Gao
  • Megan YL Young
  • Xuefeng Yuan
  • Anne E Simon

National Institutes of Health (R21AI117882-01)

  • My-Tra Le
  • Feng Gao
  • Anne E Simon

National Cancer Institute (Intramural)

  • Wojciech K Kasprzak
  • Taejin Kim
  • Bruce A Shapiro

National Institutes of Health (T32GM080201)

  • Megan YL Young

National Institutes of Health (2T32AI051967-06A1)

  • Megan YL Young
  • Anne E Simon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Version history

  1. Received: November 3, 2016
  2. Accepted: February 7, 2017
  3. Accepted Manuscript published: February 10, 2017 (version 1)
  4. Accepted Manuscript updated: February 13, 2017 (version 2)
  5. Version of Record published: March 3, 2017 (version 3)

Copyright

© 2017, Le et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,064
    views
  • 240
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. My-Tra Le
  2. Wojciech K Kasprzak
  3. Taejin Kim
  4. Feng Gao
  5. Megan YL Young
  6. Xuefeng Yuan
  7. Bruce A Shapiro
  8. Joonil Seog
  9. Anne E Simon
(2017)
Folding behavior of a T-shaped, ribosome-binding translation enhancer implicated in a wide-spread conformational switch
eLife 6:e22883.
https://doi.org/10.7554/eLife.22883

Share this article

https://doi.org/10.7554/eLife.22883

Further reading

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.

    1. Structural Biology and Molecular Biophysics
    Christian Galicia, Giambattista Guaitoli ... Wim Versées
    Research Article

    Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson’s disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.