Structural basis for the inhibition of RecBCD by Gam and its synergistic antibacterial effect with quinolones

  1. Martin Wilkinson
  2. Luca A Troman
  3. Wan AK Wan Nur Ismah
  4. Yuriy Chaban
  5. Matthew B Avison
  6. Mark Simon Dillingham  Is a corresponding author
  7. Dale B Wigley  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. University of Bristol, United Kingdom

Abstract

In previous work we used high-resolution cryo-electron microscopy to solve the structure of the Escherichia coli RecBCD complex, which acts in both the repair of double-stranded DNA breaks and the degradation of bacteriophage DNA (Wilkinson et al, 2016). To counteract the latter activity, bacteriophage λ encodes a small protein inhibitor called Gam that binds to RecBCD and inactivates the complex. Here, we show that Gam inhibits RecBCD by competing at the DNA-binding site. The interaction surface is extensive and involves molecular mimicry of the DNA substrate. We also show that expression of Gam in E. coli or Klebsiella pneumoniae increases sensitivity to fluoroquinolones; antibacterials that kill cells by inhibiting topoisomerases and inducing double-stranded DNA breaks. Furthermore, fluoroquinolone-resistance in K. pneumoniae clinical isolates is reversed by expression of Gam. Together, our data explain the synthetic lethality observed between topoisomerase-induced DNA breaks and the RecBCD gene products, suggesting a new co-antibacterial strategy.

Article and author information

Author details

  1. Martin Wilkinson

    Section of Structural Biology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Luca A Troman

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Wan AK Wan Nur Ismah

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuriy Chaban

    Section of Structural Biology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew B Avison

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Mark Simon Dillingham

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    For correspondence
    mark.dillingham@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4612-7141
  7. Dale B Wigley

    Section of Structural Biology, Imperial College London, London, United Kingdom
    For correspondence
    d.wigley@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0786-6726

Funding

Wellcome (095519/B/11/Z)

  • Dale B Wigley

Medical Research Council (MR/N009258/1)

  • Dale B Wigley

Cancer Research UK (A12799)

  • Dale B Wigley

Wellcome (100401/Z/12/Z)

  • Mark Simon Dillingham

Engineering and Physical Sciences Research Council (EP/M027546/1)

  • Matthew B Avison

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Sherratt, University of Oxford, United Kingdom

Version history

  1. Received: November 11, 2016
  2. Accepted: December 22, 2016
  3. Accepted Manuscript published: December 23, 2016 (version 1)
  4. Version of Record published: January 6, 2017 (version 2)

Copyright

© 2016, Wilkinson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,521
    views
  • 504
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin Wilkinson
  2. Luca A Troman
  3. Wan AK Wan Nur Ismah
  4. Yuriy Chaban
  5. Matthew B Avison
  6. Mark Simon Dillingham
  7. Dale B Wigley
(2016)
Structural basis for the inhibition of RecBCD by Gam and its synergistic antibacterial effect with quinolones
eLife 5:e22963.
https://doi.org/10.7554/eLife.22963

Share this article

https://doi.org/10.7554/eLife.22963

Further reading

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.