Dilation of fusion pores by crowding of SNARE proteins

  1. Zhenyong Wu
  2. Oscar D Bello
  3. Sathish Thiyagarajan
  4. Sarah Marie Auclair
  5. Wensi Vennekate
  6. Shyam S Krishnakumar
  7. Ben O'Shaughnessy
  8. Erdem Karatekin  Is a corresponding author
  1. School of Medicine, Yale University, United States
  2. Yale University, United States
  3. Columbia University, United States

Abstract

Hormones and neurotransmitters are released through fluctuating exocytotic fusion pores that can flicker open and shut multiple times. Cargo release and vesicle recycling depend on the fate of the pore, which may reseal or dilate irreversibly. Pore nucleation requires zippering between vesicle-associated v- and target membrane t-SNAREs, but the mechanisms governing the subsequent pore dilation are not understood. Here, we probed dilation of single fusion pores using v-SNARE-reconstituted ~23 nm diameter discoidal nanolipoprotein particles (vNLPs) as fusion partners with cells ectopically expressing cognate, 'flipped' t-SNAREs. Pore nucleation required a minimum of 2, and reached a maximum above ~4 copies per face, but the probability of pore dilation was far from saturating at 15 copies, the NLP capacity. Our experimental and computational results suggest SNARE availability may be pivotal in determining whether neurotransmitters or hormones are released through a transient (kiss & run) or an irreversibly dilating pore (full fusion).

Article and author information

Author details

  1. Zhenyong Wu

    Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Oscar D Bello

    Nanobiology Institute, Yale University, West Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sathish Thiyagarajan

    Department of Physics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sarah Marie Auclair

    Nanobiology Institute, Yale University, West Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wensi Vennekate

    Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shyam S Krishnakumar

    Nanobiology Institute, Yale University, West Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6148-3251
  7. Ben O'Shaughnessy

    Department of Chemical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Erdem Karatekin

    Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, United States
    For correspondence
    erdem.karatekin@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5934-8728

Funding

National Institute of General Medical Sciences (R01GM108954)

  • Erdem Karatekin

Kavli Foundation (Neuroscience Scholar Award)

  • Erdem Karatekin

Deutsche Forschungsgemeinschaft (VE760/1-1)

  • Wensi Vennekate

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK027044)

  • Shyam S Krishnakumar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Stanford University Medical Center, United States

Version history

  1. Received: November 4, 2016
  2. Accepted: March 26, 2017
  3. Accepted Manuscript published: March 27, 2017 (version 1)
  4. Version of Record published: April 25, 2017 (version 2)

Copyright

© 2017, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,062
    views
  • 533
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhenyong Wu
  2. Oscar D Bello
  3. Sathish Thiyagarajan
  4. Sarah Marie Auclair
  5. Wensi Vennekate
  6. Shyam S Krishnakumar
  7. Ben O'Shaughnessy
  8. Erdem Karatekin
(2017)
Dilation of fusion pores by crowding of SNARE proteins
eLife 6:e22964.
https://doi.org/10.7554/eLife.22964

Share this article

https://doi.org/10.7554/eLife.22964

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.

    1. Structural Biology and Molecular Biophysics
    Thuy TM Ngo, Bailey Liu ... Taekjip Ha
    Research Article

    The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.