Introduction of a male-harming mitochondrial haplotype via 'Trojan Females' achieves population suppression in fruit flies

  1. Jonci Nikolai Wolff  Is a corresponding author
  2. Neil J Gemmell
  3. Daniel M Tompkins
  4. Damian K Dowling
  1. Monash University, Australia
  2. University of Otago, New Zealand
  3. Landcare Research, New Zealand

Abstract

Pests are a global threat to biodiversity, ecosystem function, and human health. Pest control approaches are thus numerous, but their implementation costly, damaging to non-target species, and ineffective at low population densities. The Trojan Female Technique (TFT) is a prospective self-perpetuating control technique that is species-specific and predicted to be effective at low densities. The goal of the TFT is to harness naturally-occurring mutations in the mitochondrial genome that impair male fertility while having no effect on females. Here, we provide proof-of-concept for the TFT, by showing that introduction of a male fertility-impairing mtDNA haplotype into replicated populations of Drosophila melanogaster causes numerical population suppression, with the magnitude of effect positively correlated with its frequency at trial inception. Further development of the TFT could lead to establishing a control strategy that overcomes limitations of conventional approaches, with broad applicability to invertebrate and vertebrate species, to control environmental and economic pests.

Article and author information

Author details

  1. Jonci Nikolai Wolff

    School of Biological Sciences, Monash University, Melbourne, Australia
    For correspondence
    jonci.wolff@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8809-5010
  2. Neil J Gemmell

    Department of Anatomy, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0671-3637
  3. Daniel M Tompkins

    Landcare Research, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  4. Damian K Dowling

    School of Biological Sciences, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.

Funding

New Zealand Ministry of Business, Innovation and Employment (Smart Ideas Grant)

  • Neil J Gemmell
  • Daniel M Tompkins
  • Damian K Dowling

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marcel Dicke, Wageningen University, Netherlands

Version history

  1. Received: November 22, 2016
  2. Accepted: April 27, 2017
  3. Accepted Manuscript published: May 3, 2017 (version 1)
  4. Version of Record published: May 23, 2017 (version 2)

Copyright

© 2017, Wolff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,727
    views
  • 327
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonci Nikolai Wolff
  2. Neil J Gemmell
  3. Daniel M Tompkins
  4. Damian K Dowling
(2017)
Introduction of a male-harming mitochondrial haplotype via 'Trojan Females' achieves population suppression in fruit flies
eLife 6:e23551.
https://doi.org/10.7554/eLife.23551

Share this article

https://doi.org/10.7554/eLife.23551

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Genetics and Genomics
    Can Hu, Xue-Ting Zhu ... Jin-Qiu Zhou
    Research Article

    Telomeres, which are chromosomal end structures, play a crucial role in maintaining genome stability and integrity in eukaryotes. In the baker’s yeast Saccharomyces cerevisiae, the X- and Y’-elements are subtelomeric repetitive sequences found in all 32 and 17 telomeres, respectively. While the Y’-elements serve as a backup for telomere functions in cells lacking telomerase, the function of the X-elements remains unclear. This study utilized the S. cerevisiae strain SY12, which has three chromosomes and six telomeres, to investigate the role of X-elements (as well as Y’-elements) in telomere maintenance. Deletion of Y’-elements (SY12), X-elements (SY12XYΔ+Y), or both X- and Y’-elements (SY12XYΔ) did not impact the length of the terminal TG1-3 tracks or telomere silencing. However, inactivation of telomerase in SY12, SY12XYΔ+Y, and SY12XYΔ cells resulted in cellular senescence and the generation of survivors. These survivors either maintained their telomeres through homologous recombination-dependent TG1-3 track elongation or underwent microhomology-mediated intra-chromosomal end-to-end joining. Our findings indicate the non-essential role of subtelomeric X- and Y’-elements in telomere regulation in both telomerase-proficient and telomerase-null cells and suggest that these elements may represent remnants of S. cerevisiae genome evolution. Furthermore, strains with fewer or no subtelomeric elements exhibit more concise telomere structures and offer potential models for future studies in telomere biology.