The dynamic three-dimensional organization of the diploid yeast genome

  1. Seungsoo Kim
  2. Ivan Liachko
  3. Donna G Brickner
  4. Kate Cook
  5. William S Noble
  6. Jason H Brickner
  7. Jay Shendure
  8. Maitreya J Dunham  Is a corresponding author
  1. University of Washington, United States
  2. Northwestern University, United States

Abstract

The budding yeast Saccharomyces cerevisiae is a long-standing model for the three-dimensional organization of eukaryotic genomes. However, even in this well-studied model, it is unclear how homolog pairing in diploids or environmental conditions influence overall genome organization. Here, we performed high-throughput chromosome conformation capture on diverged Saccharomyces hybrid diploids to obtain the first global view of chromosome conformation in diploid yeasts. After controlling for the Rabl-like orientation using a polymer model, we observe significant homolog proximity that increases in saturated culture conditions. Surprisingly, we observe a localized increase in homologous interactions between the HAS1-TDA1 alleles specifically under galactose induction and saturated growth. This pairing is accompanied by relocalization to the nuclear periphery and requires Nup2, suggesting a role for nuclear pore complexes. Together, these results reveal that the diploid yeast genome has a dynamic and complex 3D organization.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Seungsoo Kim

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ivan Liachko

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Donna G Brickner

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kate Cook

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. William S Noble

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jason H Brickner

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8019-3743
  7. Jay Shendure

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Maitreya J Dunham

    Department of Genome Sciences, University of Washington, Seattle, United States
    For correspondence
    maitreya@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9944-2666

Funding

National Institutes of Health (GM080484 to JHB P41GM103533 to MJD U54 DK107979 to JS and WSN)

  • William S Noble
  • Jason H Brickner
  • Jay Shendure
  • Maitreya J Dunham

National Science Foundation (graduate research fellowship DGE-1256082 to SK 1516330 to MJD)

  • Seungsoo Kim

Howard Hughes Medical Institute (JS is an investigator of HHMI MJD was supported in part by a Faculty Scholar grant from HHMI)

  • Jay Shendure
  • Maitreya J Dunham

Canadian Institute for Advanced Research (MJD is a senior fellow in the Genetic Networks Program)

  • Maitreya J Dunham

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bing Ren, University of California, San Diego School of Medicine, United States

Version history

  1. Received: November 24, 2016
  2. Accepted: May 22, 2017
  3. Accepted Manuscript published: May 24, 2017 (version 1)
  4. Version of Record published: June 19, 2017 (version 2)

Copyright

© 2017, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,272
    views
  • 940
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seungsoo Kim
  2. Ivan Liachko
  3. Donna G Brickner
  4. Kate Cook
  5. William S Noble
  6. Jason H Brickner
  7. Jay Shendure
  8. Maitreya J Dunham
(2017)
The dynamic three-dimensional organization of the diploid yeast genome
eLife 6:e23623.
https://doi.org/10.7554/eLife.23623

Share this article

https://doi.org/10.7554/eLife.23623

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.