Stromule extension along microtubules coordinated with actin-mediated anchoring guides perinuclear chloroplast movement during innate immunity

Abstract

Dynamic tubular extensions from chloroplasts called stromules have recently been shown to connect with nuclei and function during innate immunity. We demonstrate that stromules extend along microtubules (MTs) and MT organization directly affects stromule dynamics since stabilization of MTs chemically or genetically increases stromule numbers and length. Although actin filaments (AFs) are not required for stromule extension, they provide anchor points for stromules. Interestingly, there is a strong correlation between the direction of stromules from chloroplasts and the direction of chloroplast movement. Stromule-directed chloroplast movement was observed in steady-state conditions without immune induction, suggesting it is a general function of stromules in epidermal cells. Our results show that MTs and AFs may facilitate perinuclear clustering of chloroplasts during an innate immune response. We propose a model in which stromules extend along MTs and connect to AF anchor points surrounding nuclei, facilitating stromule-directed movement of chloroplasts to nuclei during innate immunity.

Article and author information

Author details

  1. Amutha Sampath Kumar

    Delaware Biotechnology Insititute, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eunsook Park

    Department of Plant and The Genome Center, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2984-3039
  3. Alexander Nedo

    Delaware Biotechnology Insititute, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ali Alqarni

    Delaware Biotechnology Insititute, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Li Ren

    Department of Plant and Soil Sciences, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kyle Hoban

    Delaware Biotechnology Institute, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shannon Modla

    Delaware Biotechnology Institute, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. John H McDonald

    Department of Biological Sciences, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Chandra Kambhamettu

    Department of Plant and Soil Sciences, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Savithramma P Dinesh-Kumar

    Department of Plant and The Genome Center, University of California, Davis, Davis, United States
    For correspondence
    spdineshkumar@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Jeffrey Lewis Caplan

    Delaware Biotechnology Institute, University of Delaware, Newark, United States
    For correspondence
    jcaplan@udel.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3991-0912

Funding

National Institutes of Health (R01 GM097587)

  • Savithramma P Dinesh-Kumar
  • Jeffrey Lewis Caplan

National Institutes of Health (P20 GM103446)

  • Jeffrey Lewis Caplan

National Institutes of Health (S10 OD016361)

  • Jeffrey Lewis Caplan

National Institutes of Health (S10 RR027273)

  • Jeffrey Lewis Caplan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jean T Greenberg, University of Chicago, United States

Version history

  1. Received: November 24, 2016
  2. Accepted: January 16, 2018
  3. Accepted Manuscript published: January 17, 2018 (version 1)
  4. Version of Record published: February 16, 2018 (version 2)

Copyright

© 2018, Kumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,212
    views
  • 908
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amutha Sampath Kumar
  2. Eunsook Park
  3. Alexander Nedo
  4. Ali Alqarni
  5. Li Ren
  6. Kyle Hoban
  7. Shannon Modla
  8. John H McDonald
  9. Chandra Kambhamettu
  10. Savithramma P Dinesh-Kumar
  11. Jeffrey Lewis Caplan
(2018)
Stromule extension along microtubules coordinated with actin-mediated anchoring guides perinuclear chloroplast movement during innate immunity
eLife 7:e23625.
https://doi.org/10.7554/eLife.23625

Share this article

https://doi.org/10.7554/eLife.23625

Further reading

    1. Cell Biology
    2. Developmental Biology
    Corey D Holman, Alexander P Sakers ... Patrick Seale
    Research Article

    The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.

    1. Cell Biology
    Tongtong Ma, Ruimin Ren ... Heng Wang
    Research Article

    Current studies on cultured meat mainly focus on the muscle tissue reconstruction in vitro, but lack the formation of intramuscular fat, which is a crucial factor in determining taste, texture, and nutritional contents. Therefore, incorporating fat into cultured meat is of superior value. In this study, we employed the myogenic/lipogenic transdifferentiation of chicken fibroblasts in 3D to produce muscle mass and deposit fat into the same cells without the co-culture or mixture of different cells or fat substances. The immortalized chicken embryonic fibroblasts were implanted into the hydrogel scaffold, and the cell proliferation and myogenic transdifferentiation were conducted in 3D to produce the whole-cut meat mimics. Compared to 2D, cells grown in 3D matrix showed elevated myogenesis and collagen production. We further induced fat deposition in the transdifferentiated muscle cells and the triglyceride content could be manipulated to match and exceed the levels of chicken meat. The gene expression analysis indicated that both lineage-specific and multifunctional signalings could contribute to the generation of muscle/fat matrix. Overall, we were able to precisely modulate muscle, fat, and extracellular matrix contents according to balanced or specialized meat preferences. These findings provide new avenues for customized cultured meat production with desired intramuscular fat contents that can be tailored to meet the diverse demands of consumers.