The interplay of stiffness and force anisotropies drive embryo elongation

  1. Thanh Thi Kim Vuong-Brender  Is a corresponding author
  2. Martine Ben Amar
  3. Julien Pontabry
  4. Michel Labouesse  Is a corresponding author
  1. Sorbonne Universités, UPMC Univ Paris 06, CNRS, France
  2. Ecole Normale Supérieure, UPMC Université Pierre et Marie Curie, Université Paris Diderot, CNRS, France
  3. Institute of Epigenetics and Stem Cells, Germany

Abstract

The morphogenesis of tissues, like the deformation of an object, results from the interplay between their material properties and the mechanical forces exerted on them. Whereas the importance of mechanical forces in influencing cell behaviour is widely recognized, the importance of tissue material properties, in particular stiffness, has received much less attention. Using C. elegans as a model, we examine how both aspects contribute to embryonic elongation. Measuring the opening shape of the epidermal actin cortex after laser nano-ablation, we assess the spatiotemporal changes of actomyosin-dependent force and stiffness along the antero-posterior and dorso-ventral axis. Experimental data and analytical modelling show that myosin II-dependent force anisotropy within the lateral epidermis, and stiffness anisotropy within the fiber-reinforced dorso-ventral epidermis are critical to drive embryonic elongation. Together, our results establish a quantitative link between cortical tension, material properties and morphogenesis of an entire embryo.

Article and author information

Author details

  1. Thanh Thi Kim Vuong-Brender

    Laboratoire de Biologie du Développement - Institut de Biologie Paris-Seine, Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, France
    For correspondence
    vuongthikimthanh@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6594-2881
  2. Martine Ben Amar

    Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Université Pierre et Marie Curie, Université Paris Diderot, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Julien Pontabry

    Helmholtz Zentrum, Institute of Epigenetics and Stem Cells, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Michel Labouesse

    Laboratoire de Biologie du Développement - Institut de Biologie Paris-Seine, Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, France
    For correspondence
    michel.labouesse@upmc.fr
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Research Council (#294744)

  • Michel Labouesse

Centre National de la Recherche Scientifique (ANR-10-LABX-0030-INRT)

  • Michel Labouesse

Université de Strasbourg (ANR-10-IDEX-0002-02)

  • Michel Labouesse

Université Pierre et Marie Curie (ANR-10-LABX-0030-INRT)

  • Michel Labouesse

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Version history

  1. Received: December 2, 2016
  2. Accepted: January 27, 2017
  3. Accepted Manuscript published: February 9, 2017 (version 1)
  4. Accepted Manuscript updated: February 15, 2017 (version 2)
  5. Version of Record published: March 29, 2017 (version 3)

Copyright

© 2017, Vuong-Brender et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,113
    views
  • 843
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thanh Thi Kim Vuong-Brender
  2. Martine Ben Amar
  3. Julien Pontabry
  4. Michel Labouesse
(2017)
The interplay of stiffness and force anisotropies drive embryo elongation
eLife 6:e23866.
https://doi.org/10.7554/eLife.23866

Share this article

https://doi.org/10.7554/eLife.23866

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.