Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating

Abstract

KATP channels are metabolic sensors that couple cell energetics to membrane excitability. In pancreatic β-cells, channels formed by SUR1 and Kir6.2 regulate insulin secretion and are the targets of antidiabetic sulfonylureas. Here, we used cryo-EM to elucidate structural basis of channel assembly and gating. The structure, determined in the presence of ATP and the sulfonylurea glibenclamide, at ~6Å resolution reveals a closed Kir6.2 tetrameric core with four peripheral SUR1s each anchored to a Kir6.2 by its N-terminal transmembrane domain (TMD0). Intricate interactions between TMD0, the loop following TMD0, and Kir6.2 near the proposed PIP2 binding site, and where ATP density is observed, suggest SUR1 may contribute to ATP and PIP2 binding to enhance Kir6.2 sensitivity to both. The SUR1-ABC core is found in an unusual inward-facing conformation whereby the two nucleotide binding domains are misaligned along a two-fold symmetry axis, revealing a possible mechanism by which glibenclamide inhibits channel activity.

Article and author information

Author details

  1. Gregory M Martin

    Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Craig Yoshioka

    Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Emily A Rex

    Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jonathan F Fay

    Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Qing Xie

    Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew R Whorton

    Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. James Z Chen

    Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
    For correspondence
    chezh@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Show-Ling Shyng

    Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
    For correspondence
    shyngs@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8230-8820

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK066485)

  • Show-Ling Shyng

National Institute of Diabetes and Digestive and Kidney Diseases (F31DK105800)

  • Gregory M Martin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Werner Kühlbrandt, Max Planck Institute of Biophysics, Germany

Version history

  1. Received: December 12, 2016
  2. Accepted: January 11, 2017
  3. Accepted Manuscript published: January 16, 2017 (version 1)
  4. Version of Record published: March 9, 2017 (version 2)

Copyright

© 2017, Martin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,295
    views
  • 1,387
    downloads
  • 159
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gregory M Martin
  2. Craig Yoshioka
  3. Emily A Rex
  4. Jonathan F Fay
  5. Qing Xie
  6. Matthew R Whorton
  7. James Z Chen
  8. Show-Ling Shyng
(2017)
Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating
eLife 6:e24149.
https://doi.org/10.7554/eLife.24149

Share this article

https://doi.org/10.7554/eLife.24149

Further reading

    1. Structural Biology and Molecular Biophysics
    Christian Galicia, Giambattista Guaitoli ... Wim Versées
    Research Article

    Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson’s disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.