EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent

  1. Shanshan Ai
  2. Yong Peng
  3. Chen Li
  4. Fei Gu
  5. Xianhong Yu
  6. Yanzhu Yue
  7. Qing Ma
  8. Jinghai Chen
  9. Zhiqiang Lin
  10. Pingzhu Zhou
  11. Huafeng Xie
  12. Terence W Prendiville
  13. Wen Zheng
  14. Yuli Liu
  15. Stuart H Orkin
  16. Da-zhi Wang
  17. Jia Yu
  18. William T Pu  Is a corresponding author
  19. Aibin He  Is a corresponding author
  1. Peking University, China
  2. Boston Children's Hospital, United States
  3. Our Lady's Children's Hospital Crumlin, Ireland
  4. Peking Union Medical College, China

Abstract

In proliferating cells, where most Polycomb repressive complex 2 (PRC2) studies have been performed, gene repression is associated with PRC2 trimethylation of H3K27 (H3K27me3). However, it is uncertain whether PCR2 writing of H3K27me3 is mechanistically required for gene silencing. Here we studied PRC2 function in postnatal mouse cardiomyocytes, where the paucity of cell division obviates bulk H3K27me3 rewriting after each cell cycle. EED (Embryonic Ectoderm Development) inactivation in the postnatal heart (EedCKO) caused lethal dilated cardiomyopathy. Surprisingly, gene upregulation in EedCKO was not coupled with loss of H3K27me3. Rather, the activating histone mark H3K27ac increased. EED interacted with histone deacetylases (HDACs) and enhanced their catalytic activity. HDAC overexpression normalized EedCKO heart function and expression of derepressed genes. Our results uncovered a non-canonical, H3K27me3-independent EED repressive mechanism that is essential for normal heart function. Our results further illustrate that organ dysfunction due to epigenetic dysregulation can be corrected by epigenetic rewiring.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Shanshan Ai

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yong Peng

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Chen Li

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Fei Gu

    Department of Cardiology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xianhong Yu

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yanzhu Yue

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Qing Ma

    Department of Cardiology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jinghai Chen

    Department of Cardiology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhiqiang Lin

    Department of Cardiology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Pingzhu Zhou

    Department of Cardiology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Huafeng Xie

    Division of Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Terence W Prendiville

    Department of Paediatric Cardiology, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  13. Wen Zheng

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Yuli Liu

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Stuart H Orkin

    Division of Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Da-zhi Wang

    Department of Cardiology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Jia Yu

    Department of Biochemistry and Molecular Biology, Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  18. William T Pu

    Department of Cardiology, Boston Children's Hospital, Cambridge, United States
    For correspondence
    wpu@pulab.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4551-8079
  19. Aibin He

    Institute of Molecular Medicine, Peking University, Beijing, China
    For correspondence
    ahe@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3489-2305

Funding

National Natural Science Foundation of China (31571487)

  • Aibin He

National Institutes of Health (U01HL098166)

  • William T Pu

National Institutes of Health (HL095712)

  • William T Pu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeannie T Lee, Massachusetts General Hospital, United States

Ethics

Animal experimentation: All animal experiments were performed according to protocols (protocol number: Lsc-HeAB-1) approved by the Institutional Animal Care and Use Committees of Peking University

Version history

  1. Received: December 22, 2016
  2. Accepted: April 9, 2017
  3. Accepted Manuscript published: April 10, 2017 (version 1)
  4. Version of Record published: April 21, 2017 (version 2)

Copyright

© 2017, Ai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,669
    views
  • 668
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shanshan Ai
  2. Yong Peng
  3. Chen Li
  4. Fei Gu
  5. Xianhong Yu
  6. Yanzhu Yue
  7. Qing Ma
  8. Jinghai Chen
  9. Zhiqiang Lin
  10. Pingzhu Zhou
  11. Huafeng Xie
  12. Terence W Prendiville
  13. Wen Zheng
  14. Yuli Liu
  15. Stuart H Orkin
  16. Da-zhi Wang
  17. Jia Yu
  18. William T Pu
  19. Aibin He
(2017)
EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent
eLife 6:e24570.
https://doi.org/10.7554/eLife.24570

Share this article

https://doi.org/10.7554/eLife.24570

Further reading

    1. Developmental Biology
    Amandine Jarysta, Abigail LD Tadenev ... Basile Tarchini
    Research Article

    Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.