A quantitative hypermorphic CNGC allele confers ectopic calcium flux and impairs cellular development

  1. David M Chiasson
  2. Kristina Haage
  3. Katharina Sollweck
  4. Andreas Brachmann
  5. Petra Dietrich
  6. Martin Parniske  Is a corresponding author
  1. Ludwig Maximilian University of Munich, Germany
  2. Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

Abstract

The coordinated control of Ca2+ signaling is essential for development in eukaryotes. Cyclic nucleotide-gated channel (CNGC) family members mediate Ca2+ influx from cellular stores in plants1-4. Here we report the unusual genetic behavior of a quantitative gain-of-function CNGC mutation (brush) in Lotus japonicus resulting in a leaky tetrameric channel. brush resides in a cluster of redundant CNGCs encoding subunits which resemble metazoan voltage-gated potassium (Kv1-Kv4) channels in assembly and gating properties. Plants homozygous for brush are impaired in root development and infection by nitrogen-fixing rhizobia which segregated as a recessive monogenic trait. The brush allele exhibited quantitative behavior since overexpression of the cluster subunits was required to suppress the brush phenotype. The results reveal a mechanism by which quantitative competition between channel subunits for tetramer assembly can impact the phenotype of the mutation carrier.

Article and author information

Author details

  1. David M Chiasson

    Faculty of Biology, Genetics, Ludwig Maximilian University of Munich, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0770-2684
  2. Kristina Haage

    Faculty of Biology, Genetics, Ludwig Maximilian University of Munich, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Katharina Sollweck

    Faculty of Biology, Genetics, Ludwig Maximilian University of Munich, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Andreas Brachmann

    Faculty of Biology, Genetics, Ludwig Maximilian University of Munich, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Petra Dietrich

    Division of Molecular Plant Physiology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin Parniske

    Faculty of Biology, Genetics, Ludwig Maximilian University of Munich, Martinsried, Germany
    For correspondence
    parniske@lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8561-747X

Funding

Deutsche Forschungsgemeinschaft (FOR964 (Calcium))

  • Kristina Haage
  • Petra Dietrich
  • Martin Parniske

H2020 European Research Council (340904 (EvolvingNodules))

  • Martin Parniske

Alexander von Humboldt-Stiftung

  • David M Chiasson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maria J Harrison, Boyce Thompson Institute for Plant Research, United States

Version history

  1. Received: January 10, 2017
  2. Accepted: September 20, 2017
  3. Accepted Manuscript published: September 21, 2017 (version 1)
  4. Version of Record published: December 5, 2017 (version 2)

Copyright

© 2017, Chiasson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,912
    views
  • 628
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David M Chiasson
  2. Kristina Haage
  3. Katharina Sollweck
  4. Andreas Brachmann
  5. Petra Dietrich
  6. Martin Parniske
(2017)
A quantitative hypermorphic CNGC allele confers ectopic calcium flux and impairs cellular development
eLife 6:e25012.
https://doi.org/10.7554/eLife.25012

Share this article

https://doi.org/10.7554/eLife.25012

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.