Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains

  1. Christoph A Bücherl
  2. Iris Katharina Jarsch
  3. Christian Schudoma
  4. Cécile Segonzac
  5. Malick Mbengue
  6. Silke Robatzek
  7. Daniel MacLean
  8. Thomas Ott
  9. Cyril Zipfel  Is a corresponding author
  1. The Sainsbury Laboratory, United Kingdom
  2. University of Cambridge, United Kingdom
  3. Earlham Institute, United Kingdom
  4. Seoul National University, Republic of Korea
  5. Université de Toulouse, CNRS, UPS, France
  6. University of Freiburg, Germany

Abstract

Cell surface receptors govern a multitude of signalling pathways in multicellular organisms. In plants, prominent examples are the receptor kinases FLS2 and BRI1, which activate immunity and steroid-mediated growth, respectively. Intriguingly, despite inducing distinct signalling outputs, both receptors employ common downstream signalling components, which exist in plasma membrane (PM)-localised protein complexes. An important question is thus how these receptor complexes maintain signalling specificity. Live-cell imaging revealed that FLS2 and BRI1 form PM nanoclusters. Using single-particle tracking we could discriminate both cluster populations and we observed spatiotemporal separation between immune and growth signalling platforms. This finding was confirmed by visualising FLS2 and BRI1 within distinct PM nanodomains marked by specific remorin proteins and differential co-localisation with the cytoskeleton. Our results thus suggest that signalling specificity between these pathways may be explained by the spatial separation of FLS2 and BRI1 with their associated signalling components within dedicated PM nanodomains.

Article and author information

Author details

  1. Christoph A Bücherl

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Iris Katharina Jarsch

    Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Christian Schudoma

    Earlham Institute, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1157-1354
  4. Cécile Segonzac

    Department of Plant Science, Plant Genome and Breeding Institute, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5537-7556
  5. Malick Mbengue

    Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Silke Robatzek

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel MacLean

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1032-0887
  8. Thomas Ott

    Faculty of Biology, Cell Biology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Cyril Zipfel

    The Sainsbury Laboratory, Norwich, United Kingdom
    For correspondence
    cyril.zipfel@tsl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4935-8583

Funding

Gatsby Charitable Foundation

  • Silke Robatzek
  • Daniel MacLean
  • Cyril Zipfel

H2020 European Research Council

  • Cyril Zipfel

Deutsche Forschungsgemeinschaft

  • Thomas Ott

Universitat Bayern

  • Iris Katharina Jarsch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thorsten Nürnberger, University of Tubingen, Germany

Version history

  1. Received: January 13, 2017
  2. Accepted: March 4, 2017
  3. Accepted Manuscript published: March 6, 2017 (version 1)
  4. Version of Record published: April 6, 2017 (version 2)

Copyright

© 2017, Bücherl et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,492
    views
  • 2,189
    downloads
  • 173
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christoph A Bücherl
  2. Iris Katharina Jarsch
  3. Christian Schudoma
  4. Cécile Segonzac
  5. Malick Mbengue
  6. Silke Robatzek
  7. Daniel MacLean
  8. Thomas Ott
  9. Cyril Zipfel
(2017)
Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains
eLife 6:e25114.
https://doi.org/10.7554/eLife.25114

Share this article

https://doi.org/10.7554/eLife.25114

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.