Evolution of reduced co-activator dependence led to target expansion of a starvation response pathway

  1. Bin Z He  Is a corresponding author
  2. Xu Zhou
  3. Erin K O'Shea  Is a corresponding author
  1. Howard Hughes Medical Institute, Harvard University Faculty of Arts and Sciences Center for Systems Biology, United States
  2. Yale School of Medicine, United States

Abstract

Although combinatorial regulation is a common feature in gene regulatory networks, how it evolves and affects network structure and function is not well understood. In S. cerevisiae, the phosphate starvation (PHO) responsive transcription factors Pho4 and Pho2 are required for gene induction and survival during phosphate starvation. In the related human commensal C. glabrata, Pho4 is required but Pho2 is dispensable for survival in phosphate starvation and is only partially required for inducing PHO genes. Phylogenetic survey suggests that reduced dependence on Pho2 evolved in C. glabrata and closely related species. In S. cerevisiae, less Pho2-dependent Pho4 orthologs induce more genes. In C. glabrata, its Pho4 binds to more locations and induces three times as many genes as Pho4 in S. cerevisiae does. Our work shows how evolution of combinatorial regulation allows for rapid expansion of a gene regulatory network's targets, possibly extending its physiological functions.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Bin Z He

    Howard Hughes Medical Institute, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Cambridge, United States
    For correspondence
    binhe@fas.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3072-6238
  2. Xu Zhou

    Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1692-6823
  3. Erin K O'Shea

    Howard Hughes Medical Institute, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Cambridge, United States
    For correspondence
    osheae@hhmi.org
    Competing interests
    Erin K O'Shea, Chief Scientific Officer and a Vice President at the Howard Hughes Medical Institute, one of the three founding funders of eLife..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2649-1018

Funding

Howard Hughes Medical Institute

  • Bin Z He
  • Xu Zhou
  • Erin K O'Shea

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Version history

  1. Received: January 15, 2017
  2. Accepted: April 29, 2017
  3. Accepted Manuscript published: May 9, 2017 (version 1)
  4. Version of Record published: May 26, 2017 (version 2)
  5. Version of Record updated: October 20, 2022 (version 3)

Copyright

© 2017, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,400
    views
  • 330
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bin Z He
  2. Xu Zhou
  3. Erin K O'Shea
(2017)
Evolution of reduced co-activator dependence led to target expansion of a starvation response pathway
eLife 6:e25157.
https://doi.org/10.7554/eLife.25157

Share this article

https://doi.org/10.7554/eLife.25157

Further reading

    1. Evolutionary Biology
    Case Vincent Miller, Jen A Bright ... Michael Pittman
    Research Article

    Enantiornithines were the dominant birds of the Mesozoic, but understanding of their diet is still tenuous. We introduce new data on the enantiornithine family Bohaiornithidae, famous for their large size and powerfully built teeth and claws. In tandem with previously published data, we comment on the breadth of enantiornithine ecology and potential patterns in which it evolved. Body mass, jaw mechanical advantage, finite element analysis of the jaw, and traditional morphometrics of the claws and skull are compared between bohaiornithids and living birds. We find bohaiornithids to be more ecologically diverse than any other enantiornithine family: Bohaiornis and Parabohaiornis are similar to living plant-eating birds; Longusunguis resembles raptorial carnivores; Zhouornis is similar to both fruit-eating birds and generalist feeders; and Shenqiornis and Sulcavis plausibly ate fish, plants, or a mix of both. We predict the ancestral enantiornithine bird to have been a generalist which ate a wide variety of foods. However, more quantitative data from across the enantiornithine tree is needed to refine this prediction. By the Early Cretaceous, enantiornithine birds had diversified into a variety of ecological niches like crown birds after the K-Pg extinction, adding to the evidence that traits unique to crown birds cannot completely explain their ecological success.