Abstract

Scaffold proteins modulate signaling pathway activity spatially and temporally. In budding yeast, the scaffold Bem1 contributes to polarity axis establishment by regulating the GTPase Cdc42. While different models have been proposed for Bem1 function, there is little direct evidence for an underlying mechanism. Here, we find that Bem1 directly augments the Guanine Exchange Factor (GEF) activity of Cdc24. Bem1 also increases GEF phosphorylation by the p21-activated kinase (PAK), Cla4. Phosphorylation abrogates the scaffold-dependent stimulation of GEF activity, rendering Cdc24 insensitive to additional Bem1. Thus, Bem1 stimulates GEF activity in a reversible fashion, contributing to signaling flux through Cdc42. The contribution of Bem1 to GTPase dynamics was borne-out by in vivo imaging: active Cdc42 was enriched at the cell pole in hypophosphorylated cdc24 mutants, while hyperphosphorylated cdc24 mutants that were resistant to scaffold stimulation displayed a deficit in active Cdc42 at the pole. These findings illustrate the self-regulatory properties that scaffold proteins confer on signaling pathways.

Article and author information

Author details

  1. Péter Rapali

    European Institute of Chemistry and Biology, University of Bordeaux, CNRS, Pessac, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Romain Mitteau

    European Institute of Chemistry and Biology, University of Bordeaux, CNRS, Pessac, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Craig Ronald Braun

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Aurèlie Massoni-Laporte

    European Institute of Chemistry and Biology, University of Bordeaux, CNRS, Pessac, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Caner Ünlü

    European Institute of Chemistry and Biology, University of Bordeaux, CNRS, Pessac, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0612-3111
  6. Laure Bataille

    European Institute of Chemistry and Biology, University of Bordeaux, CNRS, Pessac, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Floriane Saint Arramon

    European Institute of Chemistry and Biology, University of Bordeaux, CNRS, Pessac, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven P Gygi

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Derek McCusker

    European Institute of Chemistry and Biology, University of Bordeaux, CNRS, Pessac, France
    For correspondence
    mccusker@iecb.u-bordeaux.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1455-1711

Funding

Centre National de la Recherche Scientifique

  • Derek McCusker

Agence Nationale de la Recherche (ANR-13-BSV2-0015-01)

  • Derek McCusker

Regional Council of Aquitaine (2012 13 01 012)

  • Derek McCusker

Regional Council of Aquitaine (2015-1R30113)

  • Derek McCusker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mohan K Balasubramanian, University of Warwick, United Kingdom

Version history

  1. Received: January 18, 2017
  2. Accepted: March 15, 2017
  3. Accepted Manuscript published: March 17, 2017 (version 1)
  4. Version of Record published: April 10, 2017 (version 2)

Copyright

© 2017, Rapali et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,580
    views
  • 428
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Péter Rapali
  2. Romain Mitteau
  3. Craig Ronald Braun
  4. Aurèlie Massoni-Laporte
  5. Caner Ünlü
  6. Laure Bataille
  7. Floriane Saint Arramon
  8. Steven P Gygi
  9. Derek McCusker
(2017)
Scaffold-mediated gating of Cdc42 signaling flux
eLife 6:e25257.
https://doi.org/10.7554/eLife.25257

Share this article

https://doi.org/10.7554/eLife.25257

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.