Protein phosphatase 1 inactivates Mps1 to ensure efficient spindle assembly checkpoint silencing

  1. Margarida Moura
  2. Mariana Osswald
  3. Nelson Leça
  4. João Barbosa
  5. António J Pereira
  6. Helder Maiato
  7. Claudio E Sunkel  Is a corresponding author
  8. Carlos Conde  Is a corresponding author
  1. i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal

Abstract

Faithfull genome partitioning during cell division relies on the Spindle Assembly Checkpoint (SAC), a conserved signaling pathway that delays anaphase onset until all chromosomes are attached to spindle microtubules. Mps1 kinase is an upstream SAC regulator that promotes the assembly of an anaphase inhibitor through a sequential multi-target phosphorylation cascade. Thus, the SAC is highly responsive to Mps1, whose activity peaks in early mitosis as a result of its T-loop autophosphorylation. However, the mechanism controlling Mps1 inactivation once kinetochores attach to microtubules and the SAC is satisfied remains unknown. Here we show in vitro and in Drosophila that Protein Phosphatase 1 (PP1) inactivates Mps1 by dephosphorylating its T-loop. PP1-mediated dephosphorylation of Mps1 occurs at kinetochores and in the cytosol, and inactivation of both pools of Mps1 during metaphase is essential to ensure prompt and efficient SAC silencing. Overall, our findings uncover a mechanism of SAC inactivation required for timely mitotic exit.

Article and author information

Author details

  1. Margarida Moura

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  2. Mariana Osswald

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  3. Nelson Leça

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  4. João Barbosa

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  5. António J Pereira

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  6. Helder Maiato

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  7. Claudio E Sunkel

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    For correspondence
    cesunkel@ibmc.up.pt
    Competing interests
    The authors declare that no competing interests exist.
  8. Carlos Conde

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    For correspondence
    cconde@ibmc.up.pt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4177-8519

Funding

FEDER-Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 (Norte-01-0145-FEDER-000029)

  • Margarida Moura
  • Claudio E Sunkel
  • Carlos Conde

Fundação para a Ciência e a Tecnologia (PTDC7BEX-BCM/1921/2014-PR041602)

  • Claudio E Sunkel

Fundação para a Ciência e a Tecnologia (PEst-C/SAU/LA0002/2013-Incentivo2014-BGCT)

  • Claudio E Sunkel

Fundação para a Ciência e a Tecnologia (FCT Investigator grant IF/01755/2014)

  • Carlos Conde

Fundação para a Ciência e a Tecnologia (GABBA PhD Program grant PD/BD/105746/2014)

  • Mariana Osswald

Fundação para a Ciência e a Tecnologia (FCT PhD grant SFRH/BD/87871/2012)

  • João Barbosa

European Research Council (PRECISE)

  • Helder Maiato

European Research Council (CODECHECK)

  • Helder Maiato

FLAD Life Science

  • Helder Maiato

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrea Musacchio, Max Planck Institute of Molecular Physiology, Germany

Version history

  1. Received: January 23, 2017
  2. Accepted: April 29, 2017
  3. Accepted Manuscript published: May 2, 2017 (version 1)
  4. Accepted Manuscript updated: May 4, 2017 (version 2)
  5. Version of Record published: May 16, 2017 (version 3)

Copyright

© 2017, Moura et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,966
    views
  • 711
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Margarida Moura
  2. Mariana Osswald
  3. Nelson Leça
  4. João Barbosa
  5. António J Pereira
  6. Helder Maiato
  7. Claudio E Sunkel
  8. Carlos Conde
(2017)
Protein phosphatase 1 inactivates Mps1 to ensure efficient spindle assembly checkpoint silencing
eLife 6:e25366.
https://doi.org/10.7554/eLife.25366

Share this article

https://doi.org/10.7554/eLife.25366

Further reading

    1. Cell Biology
    Yoko Nakai-Futatsugi, Jianshi Jin ... Masayo Takahashi
    Research Article

    Retinal pigment epithelium (RPE) cells show heterogeneous levels of pigmentation when cultured in vitro. To know whether their color in appearance is correlated with the function of the RPE, we analyzed the color intensities of human-induced pluripotent stem cell-derived RPE cells (iPSC-RPE) together with the gene expression profile at the single-cell level. For this purpose, we utilized our recent invention, Automated Live imaging and cell Picking System (ALPS), which enabled photographing each cell before RNA-sequencing analysis to profile the gene expression of each cell. While our iPSC-RPE were categorized into four clusters by gene expression, the color intensity of iPSC-RPE did not project any specific gene expression profiles. We reasoned this by less correlation between the actual color and the gene expressions that directly define the level of pigmentation, from which we hypothesized the color of RPE cells may be a temporal condition not strongly indicating the functional characteristics of the RPE.

    1. Cancer Biology
    2. Cell Biology
    Savvas Nikolaou, Amelie Juin ... Laura M Machesky
    Research Article

    Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signaling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor-1. Overall, we implicate CYRI-B as a mediator of growth and signaling in pancreatic cancer, providing new insights into pathways controlling metastasis.