A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis

  1. Brittany M Edens
  2. Jianhua Yan
  3. Han-Xiang Deng
  4. Teepu Siddique
  5. Yongchao C Ma  Is a corresponding author
  1. Northwestern University Feinberg School of Medicine, United States

Abstract

The etiological underpinnings of amyotrophic lateral sclerosis (ALS) are complex and incompletely understood, although contributions to pathogenesis by regulators of proteolytic pathways have become increasingly apparent. Here, we present a novel variant in UBQLN4 that is associated with ALS and show that its expression compromises motor axon morphogenesis in mouse motor neurons and in zebrafish. We further demonstrate that the ALS-associated UBQLN4 variant impairs proteasomal function, and identify the Wnt signaling pathway effector beta-catenin as a UBQLN4 substrate. Inhibition of beta-catenin function rescues the UBQLN4 variant-induced motor axon phenotypes. These findings provide a strong link between the regulation of axonal morphogenesis and a new ALS-associated gene variant mediated by protein degradation pathways.

Article and author information

Author details

  1. Brittany M Edens

    Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jianhua Yan

    Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Han-Xiang Deng

    Division of Neuromuscular Medicine, Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Teepu Siddique

    Division of Neuromuscular Medicine, Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yongchao C Ma

    Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, United States
    For correspondence
    ma@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2469-4356

Funding

National Institute of Neurological Disorders and Stroke (NS094564)

  • Yongchao C Ma

National Institute on Aging (AG043970)

  • Yongchao C Ma

Hartwell Foundation

  • Yongchao C Ma

Whitehall Foundation

  • Yongchao C Ma

National Institute of Neurological Disorders and Stroke (NS078504)

  • Teepu Siddique

Les Turner ALS Foundation

  • Teepu Siddique

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anne E West, Duke University School of Medicine, United States

Ethics

Animal experimentation: All animal use in this study has been approved by the Institutional Animal Care and Use Committee (IACUC) of the Lurie Children's Hospital of Chicago (protocols 14-012 and 15-006). All studies were conducted in accordance with the US Public Health Service's Policy on Humane Care and Use of Laboratory Animals.

Human subjects: The use of human subjects in this study has been approved by the Northwestern University Institutional Review Board (IRB). Informed consent was obtained from all subjects.

Version history

  1. Received: January 25, 2017
  2. Accepted: April 29, 2017
  3. Accepted Manuscript published: May 2, 2017 (version 1)
  4. Accepted Manuscript updated: May 4, 2017 (version 2)
  5. Version of Record published: May 31, 2017 (version 3)

Copyright

© 2017, Edens et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,105
    views
  • 699
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brittany M Edens
  2. Jianhua Yan
  3. Han-Xiang Deng
  4. Teepu Siddique
  5. Yongchao C Ma
(2017)
A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis
eLife 6:e25453.
https://doi.org/10.7554/eLife.25453

Share this article

https://doi.org/10.7554/eLife.25453

Further reading

    1. Cell Biology
    2. Neuroscience
    Alexandra Stavsky, Leonardo A Parra-Rivas ... Daniel Gitler
    Short Report

    The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.

    1. Cell Biology
    Rita De Gasperi, Laszlo Csernoch ... Christopher P Cardozo
    Research Article

    Here, we investigated the mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development, including asymmetric cell division, cell-type specification, and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (Numbl) in mouse myofibers caused weakness, disorganization of sarcomeres, and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, Numbl knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb that Septin 7 is a potential Numb-binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets, and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb-binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.