Structural basis of transcription arrest by coliphage HK022 nun in an Escherichia coli RNA polymerase elongation complex

  1. Jin Young Kang
  2. Paul Dominic B Olinares
  3. James Chen
  4. Elizabeth A Campbell
  5. Arkady Mustaev
  6. Brian T Chait
  7. Max E Gottesman
  8. Seth A Darst  Is a corresponding author
  1. The Rockefeller University, United States
  2. Public Health Research Institute, United States
  3. Columbia University Medical Center, United States

Abstract

Coliphage HK022 Nun blocks superinfection by coliphage λ by stalling RNA polymerase (RNAP) translocation specifically on λΔNA.To provide a structural framework to understand how Nun blocks RNAP translocation, we determined structures of Escherichia coli RNAP ternary elongation complexes (TECs) with and without Nun by single-particle cryo-electron microscopy. Nun fits tightly into the TEC by taking advantage of gaps between the RNAP and the nucleic acids. The C-terminal segment of Nun interacts with the RNAP β and β’ subunits inside the RNAP active site cleft as well as with nearly every element of the nucleic-acid scaffold, essentially crosslinking the RNAP and the nucleic acids to prevent translocation, a mechanism supported by the effects of Nun amino acid substitutions. The nature of Nun interactions inside the RNAP active site cleft suggests that RNAP clamp opening is required for Nun to establish its interactions, explaining why Nun acts on paused TECs.

Data availability

The following data sets were generated
    1. Jin Young Kang
    2. Seth A. Darst
    (2017) CryoEM structure of HK022 Nun - E. coli RNA polymerase elongation complex
    Publicly available at the EMBL-EBI Protein Data Bank in Europe (accession no: EMD-8584).
    1. Jin Young Kang
    2. Seth A. Darst
    (2017) CryoEM structure of crosslinked E.coli RNA polymerase elongation complex
    Publicly available at the EMBL-EBI Protein Data Bank in Europe (accession no: EMD-8585).
    1. Jin Young Kang
    2. Seth A. Darst
    (2017) CryoEM structure of E.coli RNA polymerase elongation complex
    Publicly available at the EMBL-EBI Protein Data Bank in Europe (accession no: EMD-8586).
The following previously published data sets were used
    1. Bae B
    2. Darst SA
    (2013) Crystal Structure Analysis of the E.coli holoenzyme
    Publicly available at the RCSB Protein Data Bank (accession no: 4LJZ).

Article and author information

Author details

  1. Jin Young Kang

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Paul Dominic B Olinares

    Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. James Chen

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Elizabeth A Campbell

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Arkady Mustaev

    Public Health Research Institute, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brian T Chait

    Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Max E Gottesman

    Department of Microbiology and Immunology, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Seth A Darst

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    For correspondence
    darst@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8241-3153

Funding

National Institutes of Health (R35 GM118130)

  • Seth A Darst

National Institutes of Health (R01 GM037219)

  • Max E Gottesman

National Institutes of Health (P41 GM103314)

  • Brian T Chait

Public Health Research Institute Research Support grant

  • Arkady Mustaev

National Institutes of Health (P41 GM109824)

  • Brian T Chait

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nikolaus Grigorieff, Janelia Research Campus, Howard Hughes Medical Institute, United States

Version history

  1. Received: January 26, 2017
  2. Accepted: March 19, 2017
  3. Accepted Manuscript published: March 20, 2017 (version 1)
  4. Version of Record published: April 10, 2017 (version 2)

Copyright

© 2017, Kang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,612
    views
  • 772
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jin Young Kang
  2. Paul Dominic B Olinares
  3. James Chen
  4. Elizabeth A Campbell
  5. Arkady Mustaev
  6. Brian T Chait
  7. Max E Gottesman
  8. Seth A Darst
(2017)
Structural basis of transcription arrest by coliphage HK022 nun in an Escherichia coli RNA polymerase elongation complex
eLife 6:e25478.
https://doi.org/10.7554/eLife.25478

Share this article

https://doi.org/10.7554/eLife.25478

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.