Single-protein detection in crowded molecular environments in cryo-EM images

  1. J Peter Rickgauer
  2. Nikolaus Grigorieff
  3. Winfried Denk  Is a corresponding author
  1. Howard Hughes Medical Institute, Janelia Research Campus, United States

Abstract

We present an approach to study macromolecular assemblies by detecting component proteins' characteristic high-resolution projection patterns, calculated from their known 3D structures, in single electron cryo-micrographs. Our method detects single apoferritin molecules in vitreous ice with high specificity and determines their orientation and location precisely. Simulations show that high spatial-frequency information and-in the presence of protein background-a whitening filter are essential for optimal detection, in particular for images taken far from focus. Experimentally, we could detect small viral RNA polymerase molecules, distributed randomly among binding locations, inside rotavirus particles. Based on the currently attainable image quality, we estimate a threshold for detection that is 150 kDa in ice and 300 kDa in 100 nm thick samples of dense biological material.

Data availability

The following previously published data sets were used
    1. De Val N
    2. Declercq JP
    (2008) Horse spleen apoferritin
    Publicly available at the RCSB Protein Data Bank (accession no: 2W0O).
    1. Bujacz A
    2. Bujacz G
    (2012) Crystal Structure of Bovine Serum Albumin
    Publicly available at the RCSB Protein Data Bank (accession no: 4F5S).

Article and author information

Author details

  1. J Peter Rickgauer

    Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nikolaus Grigorieff

    Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1506-909X
  3. Winfried Denk

    Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, United States
    For correspondence
    winfried.denk@neuro.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0704-6998

Funding

Howard Hughes Medical Institute (Internal)

  • J Peter Rickgauer
  • Nikolaus Grigorieff
  • Winfried Denk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Edward H Egelman, University of Virginia, United States

Version history

  1. Received: February 2, 2017
  2. Accepted: May 2, 2017
  3. Accepted Manuscript published: May 3, 2017 (version 1)
  4. Version of Record published: June 1, 2017 (version 2)
  5. Version of Record updated: August 18, 2017 (version 3)

Copyright

© 2017, Rickgauer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,704
    views
  • 1,629
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. J Peter Rickgauer
  2. Nikolaus Grigorieff
  3. Winfried Denk
(2017)
Single-protein detection in crowded molecular environments in cryo-EM images
eLife 6:e25648.
https://doi.org/10.7554/eLife.25648

Share this article

https://doi.org/10.7554/eLife.25648

Further reading

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.