Activation of the same mGluR5 receptors in the amygdala causes divergent effects on specific versus indiscriminate fear

  1. Mohammed Mostafizur Rahman
  2. Sonal Kedia
  3. Giselle Fernandes
  4. Sumantra Chattarji  Is a corresponding author
  1. Tata Institute of Fundamental Research, India

Abstract

Although mGluR5-antagonists prevent fear and anxiety, little is known about how the same receptor in the amygdala gives rise to both. Combining in vitro and in vivo activation of mGluR5 in rats, we identify specific changes in intrinsic excitability and synaptic plasticity in basolateral amygdala neurons that give rise to temporally distinct and mutually exclusive effects on fear-related behaviors. The immediate impact of mGluR5 activation is to produce anxiety manifested as indiscriminate fear of both tone and context. Surprisingly, this state does not interfere with the proper encoding of tone-shock associations that eventually lead to enhanced cue-specific fear. These results provide a new framework for dissecting the functional impact of amygdalar mGluR-plasticity on fear versus anxiety in health and disease.

Article and author information

Author details

  1. Mohammed Mostafizur Rahman

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Sonal Kedia

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Giselle Fernandes

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Sumantra Chattarji

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    For correspondence
    shona@ncbs.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2804-2600

Funding

Department of Atomic Energy, Government of India (NCBS-4143)

  • Sumantra Chattarji

Department of Biotechnology , Ministry of Science and Technology (DBT-BT/MB-CNDS/2013)

  • Sumantra Chattarji

Wadhwani Foundation

  • Sumantra Chattarji

Madan and Usha Sethi Fellowship

  • Sumantra Chattarji

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jennifer L Raymond, Stanford School of Medicine, United States

Ethics

Animal experimentation: All animal care and experimentation procedures were approved by the Institutional Animal Ethics Committee, National Centre for Biological Sciences (Approval No: SC-5/2009) and Committee for thePurpose of Control and Supervision of Experiments on Animals, Government of India (Registration No: 109/CPCSEA).

Version history

  1. Received: February 2, 2017
  2. Accepted: May 26, 2017
  3. Accepted Manuscript published: May 30, 2017 (version 1)
  4. Accepted Manuscript updated: June 6, 2017 (version 2)
  5. Version of Record published: June 12, 2017 (version 3)

Copyright

© 2017, Rahman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,088
    views
  • 303
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohammed Mostafizur Rahman
  2. Sonal Kedia
  3. Giselle Fernandes
  4. Sumantra Chattarji
(2017)
Activation of the same mGluR5 receptors in the amygdala causes divergent effects on specific versus indiscriminate fear
eLife 6:e25665.
https://doi.org/10.7554/eLife.25665

Share this article

https://doi.org/10.7554/eLife.25665

Further reading

    1. Neuroscience
    Juan Jose Rodriguez Gotor, Kashif Mahfooz ... John F Wesseling
    Research Article

    Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.