Elastic force restricts the growth of the murine utricle

  1. Ksenia Gnedeva  Is a corresponding author
  2. Adrian Jacobo
  3. Joshua D Salvi
  4. Aleksandra A Petelski
  5. A James Hudspeth
  1. Howard Hughes Medical Institute, The Rockefeller University, United States

Abstract

Dysfunctions of hearing and balance are often irreversible in mammals owing to the inability of cells in the inner ear to proliferate and replace lost sensory receptors. To determine the molecular basis of this deficiency we have investigated the dynamics of growth and cellular proliferation in a murine vestibular organ, the utricle. Based on this analysis, we have created a theoretical model that captures the key features of the organ's morphogenesis. Our experimental data and model demonstrate that an elastic force opposes growth of the utricular sensory epithelium during development, confines cellular proliferation to the organ’s periphery, and eventually arrests its growth. We find that an increase in cellular density and the subsequent degradation of the transcriptional cofactor Yap underlie this process. A reduction in mechanical constraints results in accumulation and nuclear translocation of Yap, which triggers proliferation and restores the utricle's growth; interfering with Yap's activity reverses this effect.

Data availability

The following previously published data sets were used
    1. Gnedeva K
    2. Hudspeth AJ
    (2015) Gene expression in the developing murine utricle
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE72293).

Article and author information

Author details

  1. Ksenia Gnedeva

    Laboratory of Sensory Neuroscience, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    For correspondence
    gnedeva@usc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3870-9256
  2. Adrian Jacobo

    Laboratory of Sensory Neuroscience, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joshua D Salvi

    Laboratory of Sensory Neuroscience, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5140-7746
  4. Aleksandra A Petelski

    Laboratory of Sensory Neuroscience, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. A James Hudspeth

    Laboratory of Sensory Neuroscience, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0295-1323

Funding

Howard Hughes Medical Institute

  • A James Hudspeth

Robertson Therapeutic Development Fund

  • Ksenia Gnedeva
  • A James Hudspeth

National Institute on Deafness and Other Communication Disorders (2T32DC009975-07)

  • Ksenia Gnedeva

F. M. Kirby Foundation (DSG2000164)

  • Adrian Jacobo

National Institute on Deafness and Other Communication Disorders (F30DC013468)

  • Joshua D Salvi

National Institute of General Medical Sciences (T32GM007739)

  • Joshua D Salvi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tanya T Whitfield, University of Sheffield, United Kingdom

Ethics

Animal experimentation: Experiments were conducted in accordance with the policies of The Rockefeller University's Institutional Animal Care and Use Committee (IACUC Protocol 15832) and the Keck School of Medicine of the University of Southern California (IACUC Protocol 20108).

Version history

  1. Received: February 4, 2017
  2. Accepted: July 21, 2017
  3. Accepted Manuscript published: July 25, 2017 (version 1)
  4. Version of Record published: August 9, 2017 (version 2)

Copyright

© 2017, Gnedeva et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,563
    views
  • 368
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ksenia Gnedeva
  2. Adrian Jacobo
  3. Joshua D Salvi
  4. Aleksandra A Petelski
  5. A James Hudspeth
(2017)
Elastic force restricts the growth of the murine utricle
eLife 6:e25681.
https://doi.org/10.7554/eLife.25681

Share this article

https://doi.org/10.7554/eLife.25681

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

    1. Computational and Systems Biology
    Skander Kazdaghli, Iordanis Kerenidis ... Philip Teare
    Research Article

    Imputing data is a critical issue for machine learning practitioners, including in the life sciences domain, where missing clinical data is a typical situation and the reliability of the imputation is of great importance. Currently, there is no canonical approach for imputation of clinical data and widely used algorithms introduce variance in the downstream classification. Here we propose novel imputation methods based on determinantal point processes (DPP) that enhance popular techniques such as the multivariate imputation by chained equations and MissForest. Their advantages are twofold: improving the quality of the imputed data demonstrated by increased accuracy of the downstream classification and providing deterministic and reliable imputations that remove the variance from the classification results. We experimentally demonstrate the advantages of our methods by performing extensive imputations on synthetic and real clinical data. We also perform quantum hardware experiments by applying the quantum circuits for DPP sampling since such quantum algorithms provide a computational advantage with respect to classical ones. We demonstrate competitive results with up to 10 qubits for small-scale imputation tasks on a state-of-the-art IBM quantum processor. Our classical and quantum methods improve the effectiveness and robustness of clinical data prediction modeling by providing better and more reliable data imputations. These improvements can add significant value in settings demanding high precision, such as in pharmaceutical drug trials where our approach can provide higher confidence in the predictions made.