Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage

  1. Marketa Kaucka
  2. Tomas Zikmund
  3. Marketa Tesarova
  4. Daniel Gyllborg
  5. Andreas Hellander
  6. Josef Jaros
  7. Jozef Kaiser
  8. Julian Petersen
  9. Bara Szarowska
  10. Phillip T Newton
  11. Vyacheslav Dyachuk
  12. Lei Li
  13. Hong Qian
  14. Anne-Sofie Johansson
  15. Yuji Mishina
  16. Josh Currie
  17. Elly M Tanaka
  18. Alek Erickson
  19. Andrew Dudley
  20. Hjalmar Brismar
  21. Paul Southam
  22. Enrico Coen
  23. Min Chen
  24. Lee S Weinstein
  25. Ales Hampl
  26. Ernest Arenas
  27. Andrei S Chagin
  28. Kaj Fried  Is a corresponding author
  29. Igor Adameyko  Is a corresponding author
  1. Karolinska Institutet, Sweden
  2. Brno University of Technology, Czech Republic
  3. Uppsala University, Sweden
  4. Masaryk University, Czech Republic
  5. Medical University Vienna, Austria
  6. University of Michigan School of dentistry, United States
  7. Technische Universität Dresden, Germany
  8. University of Nebraska Medical Center, United States
  9. Royal Institute of Technology, Sweden
  10. John Innes Centre, United Kingdom
  11. National Institutes of Health, United States

Abstract

Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale.

Article and author information

Author details

  1. Marketa Kaucka

    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Tomas Zikmund

    Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. Marketa Tesarova

    Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Gyllborg

    Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Andreas Hellander

    Department of Information Technology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Josef Jaros

    Department of Histology and Embryology, Medical Faculty, Masaryk University, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  7. Jozef Kaiser

    Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  8. Julian Petersen

    Center for Brain Research, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Bara Szarowska

    Center for Brain Research, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  10. Phillip T Newton

    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  11. Vyacheslav Dyachuk

    Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  12. Lei Li

    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Hong Qian

    Department of Medicine, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  14. Anne-Sofie Johansson

    Department of Medicine, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  15. Yuji Mishina

    Department of Biologic and Materials Sciences, University of Michigan School of dentistry, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Josh Currie

    Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  17. Elly M Tanaka

    Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  18. Alek Erickson

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Andrew Dudley

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Hjalmar Brismar

    Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0578-4003
  21. Paul Southam

    John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  22. Enrico Coen

    John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8454-8767
  23. Min Chen

    National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Lee S Weinstein

    National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  25. Ales Hampl

    Department of Histology and Embryology, Medical Faculty, Masaryk University, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  26. Ernest Arenas

    Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  27. Andrei S Chagin

    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2696-5850
  28. Kaj Fried

    Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
    For correspondence
    kaj.fried@ki.se
    Competing interests
    The authors declare that no competing interests exist.
  29. Igor Adameyko

    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
    For correspondence
    igor.adameyko@ki.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5471-0356

Funding

European Molecular Biology Organization (ALTF 216-2013)

  • Marketa Kaucka

Svenska Sällskapet för Medicinsk Forskning

  • Marketa Kaucka

Svenska Forskningsrådet Formas

  • Andreas Hellander
  • Phillip T Newton
  • Andrei S Chagin
  • Kaj Fried
  • Igor Adameyko

Karolinska Institutet

  • Phillip T Newton
  • Andrei S Chagin
  • Kaj Fried
  • Igor Adameyko

Bertil Hållstens Forskningsstiftelse

  • Igor Adameyko

Åke Wiberg Stiftelse

  • Igor Adameyko

National Institutes of Health

  • Andreas Hellander

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne Bronner, California Institute of Technology, United States

Ethics

Animal experimentation: All animal (mouse) work has been approved and permitted by the Ethical Committee on Animal Experiments (Norra Djurförsöksetiska Nämd, ethical permit N226/15 and N5/14) and conducted according to The Swedish Animal Agency´s Provisions and Guidelines for Animal Experimentation recommendations.

Version history

  1. Received: February 9, 2017
  2. Accepted: April 16, 2017
  3. Accepted Manuscript published: April 17, 2017 (version 1)
  4. Version of Record published: May 4, 2017 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,391
    views
  • 679
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marketa Kaucka
  2. Tomas Zikmund
  3. Marketa Tesarova
  4. Daniel Gyllborg
  5. Andreas Hellander
  6. Josef Jaros
  7. Jozef Kaiser
  8. Julian Petersen
  9. Bara Szarowska
  10. Phillip T Newton
  11. Vyacheslav Dyachuk
  12. Lei Li
  13. Hong Qian
  14. Anne-Sofie Johansson
  15. Yuji Mishina
  16. Josh Currie
  17. Elly M Tanaka
  18. Alek Erickson
  19. Andrew Dudley
  20. Hjalmar Brismar
  21. Paul Southam
  22. Enrico Coen
  23. Min Chen
  24. Lee S Weinstein
  25. Ales Hampl
  26. Ernest Arenas
  27. Andrei S Chagin
  28. Kaj Fried
  29. Igor Adameyko
(2017)
Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage
eLife 6:e25902.
https://doi.org/10.7554/eLife.25902

Share this article

https://doi.org/10.7554/eLife.25902

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Arya Y Nakhe, Prasanna K Dadi ... David A Jacobson
    Research Article

    The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.