Intracellular uptake of macromolecules by brain lymphatic endothelial cells during zebrafish embryonic development

  1. Max van Lessen
  2. Shannon Shibata-Germanos
  3. Andreas van Impel
  4. Thomas A Hawkins
  5. Jason Rihel
  6. Stefan Schulte-Merker  Is a corresponding author
  1. Westfälische Wilhelms-Universität Münster, Germany
  2. University College London, United Kingdom

Abstract

The lymphatic system controls fluid homeostasis and the clearance of macromolecules from interstitial compartments. In mammals brain lymphatics were only recently discovered, with significant implications for physiology and disease. We examined zebrafish for the presence of brain lymphatics and found loosely connected endothelial cells with lymphatic molecular signature covering parts of the brain without forming endothelial tubular structures. These brain lymphatic endothelial cells (BLECs) derive from venous endothelium, are distinct from macrophages, and are sensitive to loss of Vegfc. BLECs endocytose macromolecules in a selective manner, which can be blocked by injection of mannose receptor ligands. This first report on brain lymphatic endothelial cells in a vertebrate embryo identifies cells with unique features, including the uptake of macromolecules at a single cell level. Future studies will address whether this represents an uptake mechanism that is conserved in mammals and how these cells affect functions of the embryonic and adult brain.

Article and author information

Author details

  1. Max van Lessen

    Institute of Cardiovascular Organogenesis and Regeneration, Westfälische Wilhelms-Universität Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Shannon Shibata-Germanos

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Andreas van Impel

    Institute of Cardiovascular Organogenesis and Regeneration, Westfälische Wilhelms-Universität Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas A Hawkins

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Jason Rihel

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Stefan Schulte-Merker

    Institute for Cardiovascular Organogenesis and Regeneration, Westfälische Wilhelms-Universität Münster, Muenster, Germany
    For correspondence
    schultes@ukmuenster.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3617-8807

Funding

Deutsche Forschungsgemeinschaft (FOR2325)

  • Stefan Schulte-Merker

Deutsche Forschungsgemeinschaft (CiM 1003)

  • Max van Lessen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Holger Gerhardt, Max Delbrück Centre for Molecular Medicine, Germany

Ethics

Animal experimentation: Experimental procedures were conducted under project licence awarded to J.R. from the UK Home Office (Permit Number: 70/7612), according to the UK Animals (Scientific Procedures) Act 1986.

Version history

  1. Received: February 10, 2017
  2. Accepted: May 11, 2017
  3. Accepted Manuscript published: May 12, 2017 (version 1)
  4. Version of Record published: June 2, 2017 (version 2)

Copyright

© 2017, van Lessen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,373
    views
  • 861
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Max van Lessen
  2. Shannon Shibata-Germanos
  3. Andreas van Impel
  4. Thomas A Hawkins
  5. Jason Rihel
  6. Stefan Schulte-Merker
(2017)
Intracellular uptake of macromolecules by brain lymphatic endothelial cells during zebrafish embryonic development
eLife 6:e25932.
https://doi.org/10.7554/eLife.25932

Share this article

https://doi.org/10.7554/eLife.25932

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Arya Y Nakhe, Prasanna K Dadi ... David A Jacobson
    Research Article

    The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.