Abstract

Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was found under both natural and optogenetically-evoked conditions, and was interneuron-type specific. Moreover, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale.

Article and author information

Author details

  1. Stefano Zucca

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Giulia D'Urso

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Valentina Pasquale

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4499-9536
  4. Dania Vecchia

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Giuseppe Pica

    Center of Neuroscience and Cognitive Systems, Italian Institute of Technology, Rovereto, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Serena Bovetti

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Claudio Moretti

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefano Varani

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Manuel Molano-Mazón

    Center of Neuroscience and Cognitive Systems, Italian Institute of Technology, Rovereto, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Michela Chiappalone

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Stefano Panzeri

    Center for Neuroscience and Cognitive Systems, Italian Institute of Technology, Rovereto, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1700-8909
  12. Tommaso Fellin

    Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
    For correspondence
    tommaso.fellin@iit.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2718-7533

Funding

European Research Council (NEURO-PATTERNS)

  • Tommaso Fellin

National Institutes of Health (1U01NS090576-01)

  • Tommaso Fellin

Seventh Framework Programme (DESIRE)

  • Tommaso Fellin

MIUR FIRB (RBAP11X42L)

  • Tommaso Fellin

Flag-Era JTC Human Brain Project (SLOW-DYN)

  • Stefano Panzeri
  • Tommaso Fellin

H2020 MSCA IF 2015: Manuel Molano ETIC (699829)

  • Manuel Molano-Mazón

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John Huguenard, Stanford University School of Medicine, United States

Ethics

Animal experimentation: Experimental procedures involving animals have been approved by the IIT Animal Welfare Body and by the Italian Ministry of Health (authorization # 34/2015-PR and 125/2012-B), in accordance with the National legislation (D.Lgs. 26/2014) and the European legislation (European Directive 2010/63/EU). All surgery was performed under urethane or isofluorane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: February 21, 2017
  2. Accepted: May 15, 2017
  3. Accepted Manuscript published: May 16, 2017 (version 1)
  4. Version of Record published: May 25, 2017 (version 2)

Copyright

© 2017, Zucca et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,305
    views
  • 955
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefano Zucca
  2. Giulia D'Urso
  3. Valentina Pasquale
  4. Dania Vecchia
  5. Giuseppe Pica
  6. Serena Bovetti
  7. Claudio Moretti
  8. Stefano Varani
  9. Manuel Molano-Mazón
  10. Michela Chiappalone
  11. Stefano Panzeri
  12. Tommaso Fellin
(2017)
An inhibitory gate for state transition in cortex
eLife 6:e26177.
https://doi.org/10.7554/eLife.26177

Share this article

https://doi.org/10.7554/eLife.26177

Further reading

    1. Neuroscience
    Juan Jose Rodriguez Gotor, Kashif Mahfooz ... John F Wesseling
    Research Article

    Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.