Asymmetric recognition of HIV-1 Envelope trimer by V1V2 loop-targeting antibodies

  1. Haoqing Wang
  2. Harry B Gristick
  3. Louise Scharf
  4. Anthony P West
  5. Rachel P Galimidi
  6. Michael S Seaman
  7. Natalia T Freund
  8. Michel C Nussenzweig
  9. Pamela J Bjorkman  Is a corresponding author
  1. California Institute of Technology, United States
  2. 23andMe, United States
  3. Beth Israel Deaconess Medical Center, United States
  4. Tel Aviv University, Israel
  5. The Rockefeller University, United States

Abstract

The HIV-1 envelope (Env) glycoprotein binds to host cell receptors to mediate membrane fusion. The prefusion Env trimer is stabilized by V1V2 loops that interact at the trimer apex. Broadly neutralizing antibodies (bNAbs) against V1V2 loops, exemplified by PG9, bind asymmetrically as a single Fab to the apex of the symmetric Env trimer using a protruding CDRH3 to penetrate the Env glycan shield. Here we characterized a distinct mode of V1V2 epitope recognition by the new bNAb BG1 in which two Fabs bind asymmetrically per Env trimer using a compact CDRH3. Comparisons between cryo-EM structures of Env trimer complexed with BG1 (6.2Å resolution) and PG9 (11.5Å resolution) revealed a new V1V2-targeting strategy by BG1. Analyses of the EM structures provided information relevant to vaccine design including molecular details for different modes of asymmetric recognition of Env trimer and a binding model for BG1 recognition of V1V2 involving glycan flexibility.

Data availability

The following data sets were generated
    1. Haoqing Wang
    2. Harry Gristick
    3. Pamela Bjorkman
    (2017) BG1-Env-8ANC195 complex
    Publicly available at the EMBL_EBI Protein Dtat Bank in Europe (accession no: EMD-8693).
    1. Haoqing Wang
    2. Harry Gristick
    3. Pamela Bjorkm
    (2017) PG9-Env-8ANC195 complex
    Publicly available at the EMBL_EBI Protein Dtat Bank in Europe (accession no: EMDB-8695).
    1. Louise Scharf
    2. Harry Gristick
    3. Pamela Bjorkman
    (2017) BG1 Fab coordinate
    Publicly available at the RCSB Protein Data Bank (accession no: 5VVF).

Article and author information

Author details

  1. Haoqing Wang

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  2. Harry B Gristick

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  3. Louise Scharf

    Therapeutics, 23andMe, Mountain View, United States
    Competing interests
    No competing interests declared.
  4. Anthony P West

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  5. Rachel P Galimidi

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  6. Michael S Seaman

    Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    No competing interests declared.
  7. Natalia T Freund

    Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    No competing interests declared.
  8. Michel C Nussenzweig

    Laboratory of Molecular Immunology, The Rockefeller University, New York, United States
    Competing interests
    Michel C Nussenzweig, Senior editor, eLife.
  9. Pamela J Bjorkman

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    bjorkman@caltech.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2277-3990

Funding

National Institutes of Health (GM082545-06)

  • Pamela J Bjorkman

National Institute of Allergy and Infectious Diseases (HIVRAD P01 AI100148)

  • Michel C Nussenzweig
  • Pamela J Bjorkman

Bill and Melinda Gates Foundation (1040753)

  • Michel C Nussenzweig
  • Pamela J Bjorkman

Comprehensive Antibody-Vaccine Immune Monitoring Consortium (1032144)

  • Michael S Seaman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arup K. Chakraborty, Massachusetts Institute of Technology, United States

Version history

  1. Received: April 1, 2017
  2. Accepted: May 24, 2017
  3. Accepted Manuscript published: May 26, 2017 (version 1)
  4. Version of Record published: June 15, 2017 (version 2)

Copyright

© 2017, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,118
    views
  • 450
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haoqing Wang
  2. Harry B Gristick
  3. Louise Scharf
  4. Anthony P West
  5. Rachel P Galimidi
  6. Michael S Seaman
  7. Natalia T Freund
  8. Michel C Nussenzweig
  9. Pamela J Bjorkman
(2017)
Asymmetric recognition of HIV-1 Envelope trimer by V1V2 loop-targeting antibodies
eLife 6:e27389.
https://doi.org/10.7554/eLife.27389

Share this article

https://doi.org/10.7554/eLife.27389

Further reading

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.