Spatio-temporal control of mutualism in legumes helps spread symbiotic nitrogen fixation

  1. Benoit Daubech
  2. Philippe Remigi
  3. Ginaini Doin de Moura
  4. Marta Marchetti
  5. Cécile Pouzet
  6. Marie-Christine Auriac
  7. Chaitanya S Gokhale
  8. Catherine Masson-Boivin  Is a corresponding author
  9. Delphine Capela
  1. Université de Toulouse, France
  2. Massey University, New Zealand
  3. Fédération de Recherches Agrobiosciences, Interactions, Biodiversity, France
  4. Max Planck Institute for Evolutionary Biology, Germany

Abstract

Mutualism is of fundamental importance in ecosystems. Which factors help to keep the relationship mutually beneficial and evolutionarily successful is a central question. We addressed this issue for one of the most significant mutualistic interactions on Earth, which associates plants of the leguminosae family and hundreds of nitrogen (N2)-fixing bacterial species. Here we analyze the spatio-temporal dynamics of fixers and non-fixers along the symbiotic process in the Cupriavidus taiwanensis-Mimosa pudica system. N2-fixing symbionts progressively outcompete isogenic non-fixers within root nodules, where N2-fixation occurs, even when they share the same nodule. Numerical simulations, supported by experimental validation, predict that rare fixers will invade a population dominated by non-fixing bacteria during serial nodulation cycles with a probability that is function of initial inoculum, plant population size and nodulation cycle length. Our findings provide insights into the selective forces and ecological factors that may have driven the spread of the N2-fixation mutualistic trait.

Article and author information

Author details

  1. Benoit Daubech

    LIPM, Université de Toulouse, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Philippe Remigi

    New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9023-3788
  3. Ginaini Doin de Moura

    LIPM, Université de Toulouse, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marta Marchetti

    LIPM, Université de Toulouse, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Cécile Pouzet

    Plateforme d'Imagerie TRI, Fédération de Recherches Agrobiosciences, Interactions, Biodiversity, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Marie-Christine Auriac

    LIPM, Université de Toulouse, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Chaitanya S Gokhale

    Research Group for Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Ploen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5749-3665
  8. Catherine Masson-Boivin

    LIPM, Université de Toulouse, Castanet-Tolosan, France
    For correspondence
    catherine.masson@inra.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3506-3808
  9. Delphine Capela

    LIPM, Université de Toulouse, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR-12-ADAP-0014-01)

  • Marta Marchetti
  • Catherine Masson-Boivin
  • Delphine Capela

Institut National de la Recherche Agronomique

  • Benoit Daubech

Max Planck society

  • Chaitanya S Gokhale

Agence Nationale de la Recherche (ANR-16-CE20-0011-01)

  • Marta Marchetti
  • Catherine Masson-Boivin
  • Delphine Capela

Agence Nationale de la Recherche (ANR-10-LABX-41)

  • Benoit Daubech
  • Marta Marchetti
  • Cécile Pouzet
  • Marie-Christine Auriac
  • Catherine Masson-Boivin
  • Delphine Capela

Agence Nationale de la Recherche (ANR-11-IDEX-0002-02)

  • Benoit Daubech
  • Marta Marchetti
  • Cécile Pouzet
  • Marie-Christine Auriac
  • Catherine Masson-Boivin
  • Delphine Capela

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wenying Shou, Fred Hutchinson Cancer Research Center, United States

Version history

  1. Received: May 17, 2017
  2. Accepted: October 11, 2017
  3. Accepted Manuscript published: October 12, 2017 (version 1)
  4. Version of Record published: November 15, 2017 (version 2)

Copyright

© 2017, Daubech et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,338
    views
  • 404
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benoit Daubech
  2. Philippe Remigi
  3. Ginaini Doin de Moura
  4. Marta Marchetti
  5. Cécile Pouzet
  6. Marie-Christine Auriac
  7. Chaitanya S Gokhale
  8. Catherine Masson-Boivin
  9. Delphine Capela
(2017)
Spatio-temporal control of mutualism in legumes helps spread symbiotic nitrogen fixation
eLife 6:e28683.
https://doi.org/10.7554/eLife.28683

Share this article

https://doi.org/10.7554/eLife.28683

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.