An unfolded protein-induced conformational switch activates mammalian IRE1

  1. Gülsün Elif Karagöz  Is a corresponding author
  2. Diego Acosta-Alvear
  3. Hieu T Nguyen
  4. Crystal P Lee
  5. Feixia Chu
  6. Peter Walter
  1. University of California, San Francisco, United States
  2. University of New Hampshire, United States

Abstract

The unfolded protein response (UPR) adjusts the cell's protein folding capacity in the endoplasmic reticulum (ER) according to need. IRE1 is the most conserved UPR sensor in eukaryotic cells. It has remained controversial, however, whether mammalian and yeast IRE1 use a common mechanism for ER stress sensing. Here, we show that similar to yeast, human IRE1α's ER-lumenal domain (hIRE1α LD) binds peptides with a characteristic amino acid bias. Peptides and unfolded proteins bind to hIRE1α LD's MHC-like groove and induce allosteric changes that lead to its oligomerization. Mutation of a hydrophobic patch at the oligomerization interface decoupled peptide binding to hIRE1α LD from its oligomerization, yet retained peptide-induced allosteric coupling within the domain. Importantly, impairing oligomerization of hIRE1α LD abolished IRE1's activity in living cells. Our results provide evidence for a unifying mechanism of IRE1 activation that relies on unfolded protein binding-induced oligomerization.

Article and author information

Author details

  1. Gülsün Elif Karagöz

    Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    For correspondence
    elif@walterlab.ucsf.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3392-2250
  2. Diego Acosta-Alvear

    Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Hieu T Nguyen

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    Competing interests
    No competing interests declared.
  4. Crystal P Lee

    Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    Crystal P Lee, Currently an employee of BioMarin Pharmaceutical Inc., but the research was conducted at UCSF. The author has no competing interests to declare.
  5. Feixia Chu

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    Competing interests
    No competing interests declared.
  6. Peter Walter

    Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6849-708X

Funding

Howard Hughes Medical Institute

  • Peter Walter

National Science Foundation (CLF #1307367)

  • Feixia Chu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lewis E Kay, University of Toronto, Canada

Version history

  1. Received: July 27, 2017
  2. Accepted: October 2, 2017
  3. Accepted Manuscript published: October 3, 2017 (version 1)
  4. Version of Record published: November 22, 2017 (version 2)

Copyright

© 2017, Karagöz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,546
    views
  • 1,205
    downloads
  • 156
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gülsün Elif Karagöz
  2. Diego Acosta-Alvear
  3. Hieu T Nguyen
  4. Crystal P Lee
  5. Feixia Chu
  6. Peter Walter
(2017)
An unfolded protein-induced conformational switch activates mammalian IRE1
eLife 6:e30700.
https://doi.org/10.7554/eLife.30700

Share this article

https://doi.org/10.7554/eLife.30700

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.