Interactions between stimulus and response types are more strongly represented in the entorhinal cortex than in its upstream regions in rats

  1. Eun-Hye Park
  2. Jae-Rong Ahn
  3. Inah Lee  Is a corresponding author
  1. Seoul National University, Republic of Korea

Abstract

Previously we reported results which suggested that response types are critical in dissociating the lateral entorhinal cortex (LEC) from the medial entorhinal cortex (MEC) in a scene memory task (Yoo and Lee, 2017). Here, we investigated whether the perirhinal cortex (PER) and postrhinal cortex (POR), the upstream regions of the LEC and MEC, respectively, could be dissociated similarly. We conducted four tasks by combining different stimulus and response types. Our results suggest that the PER is important whenever object recognition is required and, together with prior findings, imply that PER-LEC networks are essential in goal-directed interactions with objects. The POR appears critical for recognizing visual scenes and may play key roles in scene-based navigation together with the MEC. The relative lack of functional dissociation between stimulus and response types at the PER-POR level suggests that actions conditioned on the recognition of external stimuli may be uniquely represented from the EC.

Article and author information

Author details

  1. Eun-Hye Park

    Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Jae-Rong Ahn

    Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Inah Lee

    Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
    For correspondence
    inahlee@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3760-4257

Funding

National Research Foundation of Korea (2015M3C7A1031969)

  • Inah Lee

National Research Foundation of Korea (2016R1A2B4008692)

  • Inah Lee

National Research Foundation of Korea (2017M3C7A1029661)

  • Inah Lee

National Research Foundation of Korea (5286-2014100 (BK21+ program))

  • Inah Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geoffrey Schoenbaum, NIDA, United States

Ethics

Animal experimentation: All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the Seoul National University (SNU-120925-1-7). All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: October 10, 2017
  2. Accepted: December 22, 2017
  3. Accepted Manuscript published: December 27, 2017 (version 1)
  4. Version of Record published: January 17, 2018 (version 2)

Copyright

© 2017, Park et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,241
    views
  • 252
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eun-Hye Park
  2. Jae-Rong Ahn
  3. Inah Lee
(2017)
Interactions between stimulus and response types are more strongly represented in the entorhinal cortex than in its upstream regions in rats
eLife 6:e32657.
https://doi.org/10.7554/eLife.32657

Share this article

https://doi.org/10.7554/eLife.32657

Further reading

    1. Neuroscience
    Salima Messaoudi, Ada Allam ... Isabelle Caille
    Research Article

    The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.