Prediction error and repetition suppression have distinct effects on neural representations of visual information

  1. Matthew F Tang  Is a corresponding author
  2. Cooper A Smout
  3. Ehsan Arabzadeh
  4. Jason B Mattingley
  1. The University of Queensland, Australia
  2. The Australian National University, Australia

Abstract

Predictive coding theories argue that recent experience establishes expectations in the brain that generate prediction errors when violated. Prediction errors provide a possible explanation for repetition suppression, where evoked neural activity is attenuated across repeated presentations of the same stimulus. The predictive coding account argues repetition suppression arises because repeated stimuli are expected, whereas non-repeated stimuli are unexpected and thus elicit larger neural responses. Here we employed electroencephalography in humans to test the predictive coding account of repetition suppression by presenting sequences of visual gratings with orientations that were expected either to repeat or change in separate blocks of trials. We applied multivariate forward modelling to determine how orientation selectivity was affected by repetition and prediction. Unexpected stimuli were associated with significantly enhanced orientation selectivity, whereas selectivity was unaffected for repeated stimuli. Our results suggest that repetition suppression and expectation have separable effects on neural representations of visual feature information.

Data availability

The EEG data have been deposited on Dryad 10.5061/dryad.3d7kq

The following data sets were generated

Article and author information

Author details

  1. Matthew F Tang

    Queensland Brain Institute, The University of Queensland, St Lucia, Australia
    For correspondence
    m.tang1@uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5858-5126
  2. Cooper A Smout

    Queensland Brain Institute, The University of Queensland, St Lucia, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Ehsan Arabzadeh

    Eccles Institute of Neuroscience, The Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Jason B Mattingley

    Queensland Brain Institute, The University of Queensland, St Lucia, Australia
    Competing interests
    The authors declare that no competing interests exist.

Funding

Australian Research Council (CE140100007)

  • Ehsan Arabzadeh
  • Jason B Mattingley

Australian Research Council (DP170100908)

  • Ehsan Arabzadeh

Australian Research Council (FL110100103)

  • Jason B Mattingley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christopher Summerfield, University of Oxford, United Kingdom

Ethics

Human subjects: Each participant provided written informed consent prior to participation. The study was approved by The University of Queensland Human Research Ethics Committee (approval number 2012000392) and was in accordance with the Declaration of Helsinki

Version history

  1. Received: October 26, 2017
  2. Accepted: December 13, 2018
  3. Accepted Manuscript published: December 14, 2018 (version 1)
  4. Version of Record published: December 31, 2018 (version 2)

Copyright

© 2018, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,586
    views
  • 482
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew F Tang
  2. Cooper A Smout
  3. Ehsan Arabzadeh
  4. Jason B Mattingley
(2018)
Prediction error and repetition suppression have distinct effects on neural representations of visual information
eLife 7:e33123.
https://doi.org/10.7554/eLife.33123

Share this article

https://doi.org/10.7554/eLife.33123

Further reading

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.