Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions

  1. Yue Wang
  2. Yuan Shang
  3. Jianchao Li
  4. Weidi Chen
  5. Gang Li
  6. Jun Wan
  7. Wei Liu
  8. Mingjie Zhang  Is a corresponding author
  1. Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China
  2. Hong Kong University of Science and Technology, Hong Kong
  3. The Hong Kong University of Science and Technology, Hong Kong

Abstract

The Eph receptor tyrosine kinase (RTK) family is the largest subfamily of RTKs playing critical roles in many developmental processes such as tissue patterning, neurogenesis and neuronal circuit formation, angiogenesis, etc. How the 14 Eph proteins, via their highly similar cytoplasmic domains, can transmit diverse and sometimes opposite cellular signals upon engaging ephrins is a major unresolved question. Here we systematically investigated the bindings of each SAM domain of Eph receptors to the SAM domains from SHIP2 and Odin, and uncover a highly specific SAM-SAM interaction-mediated cytoplasmic Eph-effector binding pattern. Comparative X-ray crystallographic studies of several SAM-SAM heterodimer complexes, together with biochemical and cell biology experiments, not only revealed the exquisite specificity code governing Eph/effector interactions but also allowed us to identify SAMD5 as a new Eph binding partner. Finally, these Eph/effector SAM heterodimer structures can explain many Eph SAM mutations identified in patients suffering from cancers and other diseases.

Data availability

The structure factors and the coordinates of the structures reported in this work have been deposited to PDB under the accession codes of 5ZRX, 5ZRY and 5ZRZ for the EphA2/SHIP2, EphA6/Odin and EphA5/SAMD5 complex structures, respectively.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Yue Wang

    Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    No competing interests declared.
  2. Yuan Shang

    Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  3. Jianchao Li

    Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8921-1626
  4. Weidi Chen

    Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    No competing interests declared.
  5. Gang Li

    Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    No competing interests declared.
  6. Jun Wan

    Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    No competing interests declared.
  7. Wei Liu

    Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8250-2562
  8. Mingjie Zhang

    Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    For correspondence
    mzhang@ust.hk
    Competing interests
    Mingjie Zhang, Reviewing editor, <i>eLife</i>.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9404-0190

Funding

Minister of Science and Technology of China (2014CB910204)

  • Mingjie Zhang

Natural Science Foundation of Guangdong Province (2016A030312016)

  • Mingjie Zhang

Shenzhen Basic Research Grant, Shenzhen, China (JCYJ20160229153100269)

  • Wei Liu

National Natural Science Foundation of China (31670765)

  • Wei Liu

Asia Fund for Cancer Research (AFCR17SC01)

  • Mingjie Zhang

Minister of Science and Technology of China (2016YFA0501903)

  • Mingjie Zhang

Shenzhen Basic Research Grant, Shenzhen, China (JCYJ20160427185712266)

  • Wei Liu

Shenzhen Basic Research Grant, Shenzhen, China (JCYJ20170411090807530)

  • Wei Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Volker Dötsch, J.W. Goethe-University, Germany

Version history

  1. Received: February 5, 2018
  2. Accepted: May 10, 2018
  3. Accepted Manuscript published: May 11, 2018 (version 1)
  4. Version of Record published: June 8, 2018 (version 2)

Copyright

© 2018, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,912
    views
  • 391
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yue Wang
  2. Yuan Shang
  3. Jianchao Li
  4. Weidi Chen
  5. Gang Li
  6. Jun Wan
  7. Wei Liu
  8. Mingjie Zhang
(2018)
Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions
eLife 7:e35677.
https://doi.org/10.7554/eLife.35677

Share this article

https://doi.org/10.7554/eLife.35677

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.