Radially-patterned cell behaviours during tube budding from an epithelium

  1. Yara E Sanchez-Corrales
  2. Guy B Blanchard  Is a corresponding author
  3. Katja Röper  Is a corresponding author
  1. MRC Laboratory of Molecular Biology, United Kingdom
  2. University of Cambridge, United Kingdom

Abstract

The budding of tubular organs from flat epithelial sheets is a vital morphogenetic process. Cell behaviours that drive such processes are only starting to be unraveled. Using live-imaging and novel morphometric methods we show that in addition to apical constriction, radially-oriented directional intercalation of cells plays a major contribution to early stages of invagination of the salivary gland tube in the Drosophila embryo. Extending analyses in 3D, we find that near the pit of invagination, isotropic apical constriction leads to strong cell-wedging. Further from the pit cells interleave circumferentially, suggesting apically-driven behaviours. Supporting this, junctional myosin is enriched in, and neighbour exchanges are biased towards the circumferential orientation. In a mutant failing pit specification, neither are biased due to an inactive pit. Thus, tube budding involves radially-patterned pools of apical myosin, medial as well as junctional, and radially-patterned 3D-cell behaviours, with a close mechanical interplay between invagination and intercalation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Yara E Sanchez-Corrales

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1438-1994
  2. Guy B Blanchard

    Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    gb288@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  3. Katja Röper

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    kroeper@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3361-766X

Funding

Medical Research Council (U105178780)

  • Yara E Sanchez-Corrales
  • Guy B Blanchard
  • Katja Röper

Biotechnology and Biological Sciences Research Council (BB/J010278/1)

  • Guy B Blanchard

Wellcome (100329/Z/12/Z)

  • Guy B Blanchard

Isaac Newton Trust (15.23(k))

  • Guy B Blanchard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stefan Luschnig

Version history

  1. Received: February 6, 2018
  2. Accepted: July 16, 2018
  3. Accepted Manuscript published: July 17, 2018 (version 1)
  4. Accepted Manuscript updated: July 23, 2018 (version 2)
  5. Accepted Manuscript updated: July 24, 2018 (version 3)
  6. Version of Record published: August 13, 2018 (version 4)

Copyright

© 2018, Sanchez-Corrales et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,772
    views
  • 503
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yara E Sanchez-Corrales
  2. Guy B Blanchard
  3. Katja Röper
(2018)
Radially-patterned cell behaviours during tube budding from an epithelium
eLife 7:e35717.
https://doi.org/10.7554/eLife.35717

Share this article

https://doi.org/10.7554/eLife.35717

Further reading

    1. Cell Biology
    Tongtong Ma, Ruimin Ren ... Heng Wang
    Research Article

    Current studies on cultured meat mainly focus on the muscle tissue reconstruction in vitro, but lack the formation of intramuscular fat, which is a crucial factor in determining taste, texture, and nutritional contents. Therefore, incorporating fat into cultured meat is of superior value. In this study, we employed the myogenic/lipogenic transdifferentiation of chicken fibroblasts in 3D to produce muscle mass and deposit fat into the same cells without the co-culture or mixture of different cells or fat substances. The immortalized chicken embryonic fibroblasts were implanted into the hydrogel scaffold, and the cell proliferation and myogenic transdifferentiation were conducted in 3D to produce the whole-cut meat mimics. Compared to 2D, cells grown in 3D matrix showed elevated myogenesis and collagen production. We further induced fat deposition in the transdifferentiated muscle cells and the triglyceride content could be manipulated to match and exceed the levels of chicken meat. The gene expression analysis indicated that both lineage-specific and multifunctional signalings could contribute to the generation of muscle/fat matrix. Overall, we were able to precisely modulate muscle, fat, and extracellular matrix contents according to balanced or specialized meat preferences. These findings provide new avenues for customized cultured meat production with desired intramuscular fat contents that can be tailored to meet the diverse demands of consumers.

    1. Cell Biology
    Gang Liu, Yunxuan Hou ... Xiumei Jiang
    Research Article

    Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron–sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron–sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.