Functional instability allows access to DNA in longer Transcription Activator-Like Effector (TALE) arrays

  1. Kathryn Geiger-Schuller
  2. Jaba Mitra
  3. Taekjip Ha
  4. Doug Barrick  Is a corresponding author
  1. Johns Hopkins University, United States
  2. University of Illinois Urbana-Champaign, United States

Abstract

Transcription activator-like effectors (TALEs) bind DNA through an array of tandem 34-residue repeats. How TALE repeat domains wrap around DNA, often extending more than 1.5 helical turns, without using external energy is not well understood. Here, we examine the kinetics of DNA binding of TALE arrays with varying numbers of identical repeats. Single molecule fluorescence analysis and deterministic modeling reveal conformational heterogeneity in both the free- and DNA-bound TALE arrays. Our findings, combined with previously identified partly folded states, indicate a TALE instability that is functionally important for DNA binding. For TALEs forming less than one superhelical turn around DNA, partly folded states inhibit DNA binding. In contrast, for TALEs forming more than one turn, partly folded states facilitate DNA binding, demonstrating a mode of 'functional instability' that facilitates macromolecular assembly. Increasing repeat number slows down interconversion between the various DNA-free and DNA-bound states.

Data availability

Source data files have been provided for Figure 3. Source code and data files related to Figure 6 are publicly available and can be found at https://github.com/kgeigers/DeMASK.

The following data sets were generated

Article and author information

Author details

  1. Kathryn Geiger-Schuller

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6705-0681
  2. Jaba Mitra

    Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  3. Taekjip Ha

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, United States
    Competing interests
    Taekjip Ha, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2195-6258
  4. Doug Barrick

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, United States
    For correspondence
    barrick@jhu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7291-1389

Funding

National Institute of General Medical Sciences (T32-GM008403)

  • Kathryn Geiger-Schuller

National Institute of General Medical Sciences (R01-GM068462)

  • Doug Barrick

National Institute of General Medical Sciences (GM1129659)

  • Taekjip Ha

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Antoine M van Oijen, University of Wollongong, Australia

Version history

  1. Received: May 11, 2018
  2. Accepted: February 27, 2019
  3. Accepted Manuscript published: February 27, 2019 (version 1)
  4. Version of Record published: April 12, 2019 (version 2)

Copyright

© 2019, Geiger-Schuller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,751
    views
  • 281
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kathryn Geiger-Schuller
  2. Jaba Mitra
  3. Taekjip Ha
  4. Doug Barrick
(2019)
Functional instability allows access to DNA in longer Transcription Activator-Like Effector (TALE) arrays
eLife 8:e38298.
https://doi.org/10.7554/eLife.38298

Share this article

https://doi.org/10.7554/eLife.38298

Further reading

    1. Biochemistry and Chemical Biology
    Zheng Ruan, Junuk Lee ... Wei Lü
    Research Article

    Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above—which were used to identify endogenous PANX1 phosphorylation at these two sites—are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.