Nephron progenitor commitment is a stochastic process influenced by cell migration

  1. Kynan T Lawlor
  2. Luke Zappia
  3. James Lefevre
  4. Joo-Seop Park
  5. Nicholas A Hamilton
  6. Alicia Oshlack
  7. Melissa H Little  Is a corresponding author
  8. Alexander Nicholas Combes  Is a corresponding author
  1. Murdoch Children's Research Institute, Australia
  2. University of Queensland, Australia
  3. Cincinnati Children's Hospital Medical Center, United States
  4. Murdoch Childrens Research Institute, Australia
  5. University of Melbourne, Australia

Abstract

Progenitor self-renewal and differentiation is often regulated by spatially restricted cues within a tissue microenvironment. Here we examine how progenitor cell migration impacts regionally induced commitment within the nephrogenic niche in mice. We identify a subset of cells that express Wnt4, an early marker of nephron commitment, but migrate back into the progenitor population where they accumulate over time. Single cell RNA-seq and computational modelling of returning cells reveals that nephron progenitors can traverse the transcriptional hierarchy between self-renewal and commitment in either direction. This plasticity may enable robust regulation of nephrogenesis as niches remodel and grow during organogenesis.

Data availability

Single cell sequencing data has been deposited in GEO under accession code GSE118486. Gene lists from the single cell analysis and code for the simulation of cell migration and stochastic commitment have been provided as Supplementary Files.

The following data sets were generated

Article and author information

Author details

  1. Kynan T Lawlor

    Cell Biology, Murdoch Children's Research Institute, Parkville, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4080-5439
  2. Luke Zappia

    Cell Biology, Murdoch Children's Research Institute, Parkville, Australia
    Competing interests
    No competing interests declared.
  3. James Lefevre

    Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    No competing interests declared.
  4. Joo-Seop Park

    Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    No competing interests declared.
  5. Nicholas A Hamilton

    Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    No competing interests declared.
  6. Alicia Oshlack

    Cell Biology, Murdoch Children's Research Institute, Parkville, Australia
    Competing interests
    No competing interests declared.
  7. Melissa H Little

    Kidney Development, Disease and Regeneration, Murdoch Childrens Research Institute, Parkville, Australia
    For correspondence
    Melissa.Little@mcri.edu.au
    Competing interests
    Melissa H Little, Has consulted for and received research funding from Organovo Inc.
  8. Alexander Nicholas Combes

    Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
    For correspondence
    alexander.combes@unimelb.edu.au
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6008-8786

Funding

National Health and Medical Research Council (GNT1156567)

  • Alexander Nicholas Combes

Australian Research Council (DE150100652)

  • Alexander Nicholas Combes

Murdoch Children's Research Institute

  • Alexander Nicholas Combes

National Health and Medical Research Council (GNT1136085)

  • Melissa H Little

National Health and Medical Research Council (GNT1063989)

  • Melissa H Little

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Elizabeth Robertson, University of Oxford, United Kingdom

Ethics

Animal experimentation: All animal experiments were assessed and approved by the Murdoch Children's Research Institute Animal Ethics Committee (A783/A894) and were conducted in accordance with applicable Australian laws governing the care and use of animals for scientific purposes.

Version history

  1. Received: August 16, 2018
  2. Accepted: January 23, 2019
  3. Accepted Manuscript published: January 24, 2019 (version 1)
  4. Version of Record published: February 5, 2019 (version 2)

Copyright

© 2019, Lawlor et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,242
    views
  • 426
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kynan T Lawlor
  2. Luke Zappia
  3. James Lefevre
  4. Joo-Seop Park
  5. Nicholas A Hamilton
  6. Alicia Oshlack
  7. Melissa H Little
  8. Alexander Nicholas Combes
(2019)
Nephron progenitor commitment is a stochastic process influenced by cell migration
eLife 8:e41156.
https://doi.org/10.7554/eLife.41156

Share this article

https://doi.org/10.7554/eLife.41156

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Tobias Weinberger, Messerer Denise ... Christian Schulz
    Research Article

    Cardiac macrophages are heterogenous in phenotype and functions, which has been associated with differences in their ontogeny. Despite extensive research, our understanding of the precise role of different subsets of macrophages in ischemia/reperfusion (I/R) injury remains incomplete. We here investigated macrophage lineages and ablated tissue macrophages in homeostasis and after I/R injury in a CSF1R-dependent manner. Genomic deletion of a fms-intronic regulatory element (FIRE) in the Csf1r locus resulted in specific absence of resident homeostatic and antigen-presenting macrophages, without affecting the recruitment of monocyte-derived macrophages to the infarcted heart. Specific absence of homeostatic, monocyte-independent macrophages altered the immune cell crosstalk in response to injury and induced proinflammatory neutrophil polarization, resulting in impaired cardiac remodeling without influencing infarct size. In contrast, continuous CSF1R inhibition led to depletion of both resident and recruited macrophage populations. This augmented adverse remodeling after I/R and led to an increased infarct size and deterioration of cardiac function. In summary, resident macrophages orchestrate inflammatory responses improving cardiac remodeling, while recruited macrophages determine infarct size after I/R injury. These findings attribute distinct beneficial effects to different macrophage populations in the context of myocardial infarction.

    1. Cell Biology
    2. Developmental Biology
    Corey D Holman, Alexander P Sakers ... Patrick Seale
    Research Article

    The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.