Length regulation of multiple flagella that self-assemble from a shared pool of components

  1. Thomas G Fai
  2. Lishibanya Mohapatra
  3. Prathitha Kar
  4. Jane Kondev
  5. Ariel Amir  Is a corresponding author
  1. Brandeis University, United States
  2. Harvard University, United States

Abstract

The single-celled green algae Chlamydomonas reinhardtii with its two flagella - microtubule-based structures of equal and constant lengths - is the canonical model organism for studying size control of organelles. Experiments have identified motor-driven transport of tubulin to the flagella tips as a key component of their length control. Here we consider a class of models whose key assumption is that proteins responsible for the intraflagellar transport (IFT) of tubulin are present in limiting amounts. We show that the limiting-pool assumption is insufficient to describe the results of severing experiments, in which a flagellum is regenerated after it has been severed. Next, we consider an extension of the limiting-pool model that incorporates proteins that depolymerize microtubules. We show that this 'active disassembly' model of flagellar length control explains in quantitative detail the results of severing experiments and use it to make predictions that can be tested in experiments.

Data availability

All data analyzed during this study is contained in the published studies cited in the references. Source code of the simulations used in our work can be found here: https://github.com/pkar96/Agent-based-simulation.

Article and author information

Author details

  1. Thomas G Fai

    Department of Mathematics, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0383-5217
  2. Lishibanya Mohapatra

    Department of Physics, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Prathitha Kar

    Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jane Kondev

    Department of Physics, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ariel Amir

    Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
    For correspondence
    arielamir@seas.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2611-0139

Funding

National Science Foundation (CAREER 1752024)

  • Ariel Amir

National Science Foundation (DMS-1502851)

  • Thomas G Fai

National Science Foundation (DMR-1610737)

  • Jane Kondev

National Science Foundation (MRSEC-1420382)

  • Jane Kondev

Alfred P. Sloan Foundation

  • Ariel Amir

Kavli Foundation

  • Ariel Amir

Simons Foundation

  • Jane Kondev

Simons Foundation

  • Lishibanya Mohapatra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frank Jülicher, Max Planck Institute for the Physics of Complex Systems, Germany

Version history

  1. Received: October 5, 2018
  2. Accepted: October 8, 2019
  3. Accepted Manuscript published: October 9, 2019 (version 1)
  4. Version of Record published: November 19, 2019 (version 2)
  5. Version of Record updated: December 4, 2019 (version 3)

Copyright

© 2019, Fai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,315
    views
  • 349
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas G Fai
  2. Lishibanya Mohapatra
  3. Prathitha Kar
  4. Jane Kondev
  5. Ariel Amir
(2019)
Length regulation of multiple flagella that self-assemble from a shared pool of components
eLife 8:e42599.
https://doi.org/10.7554/eLife.42599

Share this article

https://doi.org/10.7554/eLife.42599

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Taegon Chung, Iksoo Chang, Sangyeol Kim
    Research Article

    Locomotion is a fundamental behavior of Caenorhabditis elegans (C. elegans). Previous works on kinetic simulations of animals helped researchers understand the physical mechanisms of locomotion and the muscle-controlling principles of neuronal circuits as an actuator part. It has yet to be understood how C. elegans utilizes the frictional forces caused by the tension of its muscles to perform sequenced locomotive behaviors. Here, we present a two-dimensional rigid body chain model for the locomotion of C. elegans by developing Newtonian equations of motion for each body segment of C. elegans. Having accounted for friction-coefficients of the surrounding environment, elastic constants of C. elegans, and its kymogram from experiments, our kinetic model (ElegansBot) reproduced various locomotion of C. elegans such as, but not limited to, forward-backward-(omega turn)-forward locomotion constituting escaping behavior and delta-turn navigation. Additionally, ElegansBot precisely quantified the forces acting on each body segment of C. elegans to allow investigation of the force distribution. This model will facilitate our understanding of the detailed mechanism of various locomotive behaviors at any given friction-coefficients of the surrounding environment. Furthermore, as the model ensures the performance of realistic behavior, it can be used to research actuator-controller interaction between muscles and neuronal circuits.

    1. Physics of Living Systems
    Giulio Facchini, Alann Rathery ... Andrea Perna
    Research Article

    Termites build complex nests which are an impressive example of self-organization. We know that the coordinated actions involved in the construction of these nests by multiple individuals are primarily mediated by signals and cues embedded in the structure of the nest itself. However, to date there is still no scientific consensus about the nature of the stimuli that guide termite construction, and how they are sensed by termites. In order to address these questions, we studied the early building behavior of Coptotermes gestroi termites in artificial arenas, decorated with topographic cues to stimulate construction. Pellet collections were evenly distributed across the experimental setup, compatible with a collection mechanism that is not affected by local topography, but only by the distribution of termite occupancy (termites pick pellets at the positions where they are). Conversely, pellet depositions were concentrated at locations of high surface curvature and at the boundaries between different types of substrate. The single feature shared by all pellet deposition regions was that they correspond to local maxima in the evaporation flux. We can show analytically and we confirm experimentally that evaporation flux is directly proportional to the local curvature of nest surfaces. Taken together, our results indicate that surface curvature is sufficient to organize termite building activity and that termites likely sense curvature indirectly through substrate evaporation. Our findings reconcile the apparently discordant results of previous studies.