Mutant huntingtin impairs PNKP and ATXN3, disrupting DNA repair and transcription

  1. Rui Gao
  2. Anirban Chakraborty
  3. Charlene Geater
  4. Subrata Pradhan
  5. Kara L Gordon
  6. Jeffrey Snowden
  7. Subo Yuan
  8. Audrey S Dickey
  9. Sanjeev Choudhary
  10. Tetsuo Ashizawa
  11. Lisa M Ellerby
  12. Albert R La Spada
  13. Leslie M Thompson
  14. Tapas K Hazra
  15. Partha S Sarkar  Is a corresponding author
  1. University of Texas Medical Branch, United States
  2. University of California, Irvine, United States
  3. Duke University School of Medicine, United States
  4. Sam Houston State University, United States
  5. Houston Methodist Research Institute, United States
  6. Buck Institute for Research on Aging, United States

Abstract

How huntingtin (HTT) triggers neurotoxicity in Huntington's disease (HD) remains unclear. We report that HTT forms a transcription-coupled DNA repair (TCR) complex with RNA polymerase II subunit A (POLR2A), ataxin-3, the DNA repair enzyme polynucleotide-kinase-3'-phosphatase (PNKP), and cyclic AMP-response element-binding (CREB) protein (CBP). This complex senses and facilitates DNA damage repair during transcriptional elongation, but its functional integrity is impaired by mutant HTT. Abrogated PNKP activity results in persistent DNA break accumulation, preferentially in actively transcribed genes, and aberrant activation of DNA damage-response ataxia telangiectasia-mutated (ATM) signaling in HD transgenic mouse and cell models. A concomitant decrease in Ataxin-3 activity facilitates CBP ubiquitination and degradation, adversely impacting transcription and DNA repair. Increasing PNKP activity in mutant cells improves genome integrity and cell survival. These findings suggest a potential molecular mechanism of how mutant HTT activates DNA damage-response pro-degenerative pathways and impairs transcription, triggering neurotoxicity and functional decline in HD.

Data availability

All data generated are included in the manuscript and supporting files.

Article and author information

Author details

  1. Rui Gao

    Department of Neurology, University of Texas Medical Branch, Galveston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Anirban Chakraborty

    Department of Internal Medicine, University of Texas Medical Branch, Galveston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Charlene Geater

    Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Subrata Pradhan

    Department of Neurology, University of Texas Medical Branch, Galveston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kara L Gordon

    Department of Neurology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jeffrey Snowden

    Department of Neurology, University of Texas Medical Branch, Galveston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Subo Yuan

    Department of Neuroscience, University of Texas Medical Branch, Galveston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Audrey S Dickey

    Department of Neurology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sanjeev Choudhary

    Department of Biochemistry, Cell Biology and Genetics, Sam Houston State University, Huntsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Tetsuo Ashizawa

    Department of Neurology, Houston Methodist Research Institute, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Lisa M Ellerby

    Buck Institute for Research on Aging, Novato, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Albert R La Spada

    Department of Neurology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6151-2964
  13. Leslie M Thompson

    Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Tapas K Hazra

    Department of Internal Medicine, University of Texas Medical Branch, Galveston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Partha S Sarkar

    Department of Neurology, University of Texas Medical Branch, Galveston, United States
    For correspondence
    pssarkar@utmb.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2885-8100

Funding

NIH Office of the Director (NSO79541-01)

  • Tapas K Hazra
  • Partha S Sarkar

NIH Office of the Director (NS073976)

  • Tapas K Hazra

Hereditary Disease Foundation (Postdoctoral Fellowship)

  • Charlene Geater

Mitchel Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX (Developmental Grant)

  • Partha S Sarkar

NIH Office of the Director (EY026089-01A1)

  • Partha S Sarkar

NIH Office of the Director (NS100529)

  • Lisa M Ellerby

NIH Office of the Director (AG033082)

  • Albert R La Spada

NIH Office of the Director (NS065874)

  • Albert R La Spada

NIH Office of the Director (NS089076)

  • Leslie M Thompson

NIH Office of the Director (NS090390)

  • Leslie M Thompson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Harry T Orr, University of Minnesota, United States

Ethics

Animal experimentation: All procedures involving animals were in accordance with the National Institutes of Health Guide for the care and use of Laboratory Animals, and approved by the Institutional Animal Care and Use Committee of University of California Irivine (protocol #: AUP-18-155); and Duke University (protocol #: A225-17-09).

Version history

  1. Received: October 19, 2018
  2. Accepted: April 16, 2019
  3. Accepted Manuscript published: April 17, 2019 (version 1)
  4. Version of Record published: May 21, 2019 (version 2)

Copyright

© 2019, Gao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,883
    views
  • 822
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rui Gao
  2. Anirban Chakraborty
  3. Charlene Geater
  4. Subrata Pradhan
  5. Kara L Gordon
  6. Jeffrey Snowden
  7. Subo Yuan
  8. Audrey S Dickey
  9. Sanjeev Choudhary
  10. Tetsuo Ashizawa
  11. Lisa M Ellerby
  12. Albert R La Spada
  13. Leslie M Thompson
  14. Tapas K Hazra
  15. Partha S Sarkar
(2019)
Mutant huntingtin impairs PNKP and ATXN3, disrupting DNA repair and transcription
eLife 8:e42988.
https://doi.org/10.7554/eLife.42988

Share this article

https://doi.org/10.7554/eLife.42988

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.