Abstract

Generating recombinant monoclonal antibodies (R-mAbs) from mAb-producing hybridomas offers numerous advantages that increase the effectiveness, reproducibility, and transparent reporting of research. We report here the generation of a novel resource in the form of a library of recombinant R-mAbs validated for neuroscience research. We cloned immunoglobulin G (IgG) variable domains from cryopreserved hybridoma cells and input them into an integrated pipeline for expression and validation of functional R-mAbs. To improve efficiency over standard protocols, we eliminated aberrant Sp2/0-Ag14 hybridoma-derived variable light transcripts using restriction enzyme treatment. Further, we engineered a plasmid backbone that allows for switching of the IgG subclasses without altering target binding specificity to generate R-mAbs useful in simultaneous multiplex labeling experiments not previously possible. The method was also employed to rescue IgG variable sequences and generate functional R-mAbs from a non-viable cryopreserved hybridoma. All R-mAb sequences and plasmids will be archived and disseminated from open source suppliers.

Data availability

Plasmids and R-mAb sequences will be made available via Addgene (https://www.addgene.org/James_Trimmer/).

Article and author information

Author details

  1. Nicolas P Andrews

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Justin X Boeckman

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0022-1474
  3. Colleen F Manning

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Joe T Nguyen

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6647-0561
  5. Hannah Bechtold

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Camelia Dumitras

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Belvin Gong

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kimberly Nguyen

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Deborah van der List

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Karl D Murray

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. JoAnne Engebrecht

    Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. James S Trimmer

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    For correspondence
    jtrimmer@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6117-3912

Funding

National Institute of Neurological Disorders and Stroke (U24 NS050606)

  • James S Trimmer

National Institute of Neurological Disorders and Stroke (R24 NS092991)

  • James S Trimmer

National Institute of Neurological Disorders and Stroke (U24 NS109113)

  • James S Trimmer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard Aldrich, The University of Texas at Austin, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#20485) of the University of California Davis. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of California Davis (Animal Welfare Assurance Number A-3433-01). All procedures were performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: November 2, 2018
  2. Accepted: January 21, 2019
  3. Accepted Manuscript published: January 22, 2019 (version 1)
  4. Version of Record published: February 15, 2019 (version 2)

Copyright

© 2019, Andrews et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,491
    views
  • 1,012
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas P Andrews
  2. Justin X Boeckman
  3. Colleen F Manning
  4. Joe T Nguyen
  5. Hannah Bechtold
  6. Camelia Dumitras
  7. Belvin Gong
  8. Kimberly Nguyen
  9. Deborah van der List
  10. Karl D Murray
  11. JoAnne Engebrecht
  12. James S Trimmer
(2019)
A toolbox of IgG subclass-switched recombinant monoclonal antibodies for enhanced multiplex immunolabeling of brain
eLife 8:e43322.
https://doi.org/10.7554/eLife.43322

Share this article

https://doi.org/10.7554/eLife.43322

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.