Inferring synaptic inputs from spikes with a conductance-based neural encoding model

  1. Kenneth W Latimer  Is a corresponding author
  2. Fred Rieke
  3. Jonathan W Pillow  Is a corresponding author
  1. University of Washington, United States
  2. Princeton University, United States

Abstract

Descriptive statistical models of neural responses generally aim to characterize the mapping from stimuli to spike responses while ignoring biophysical details of the encoding process. Here, we introduce an alternative approach, the conductance-based encoding model (CBEM), which describes amapping fromstimuli to excitatory and inhibitory synaptic conductances governing the dynamics of sub-threshold membrane potential. Remarkably, we show that the CBEM can be fit to extracellular spike train data and then used to predict excitatory and inhibitory synaptic currents. We validate these predictions with intracellular recordings from macaque retinal ganglion cells. Moreover, we offer a novel quasi-biophysical interpretation of the Poisson generalized linear model (GLM) as a special case of the CBEM in which excitation and inhibition are perfectly balanced. This work forges a new link between statistical and biophysical models of neural encoding and sheds new light on the biophysical variables that underlie spiking in the early visual pathway.

Data availability

All modeling tools have been made publicly available at https://github.com/pillowlab/CBEM. The datasets analyzed in this paper have been previously published as the following:1. Conductance and cell-attached spike recordings: Philipp Khuc Trong & Fred Rieke (2008). "Origin of correlated activity between parasol retinal ganglion cells." https://doi.org/10.1038/nn.2199. Dataset available via figshare https://figshare.com/articles/ON-Parasol_RGCs_for_the_conductance-based_encoding_model/9636854.2. Full-field extracellular recordings (including multiple contrasts): V. J. Uzzell & E. J. Chichilnisky (2004). "Precision of Spike Trains in Primate Retinal Ganglion Cells." https://doi.org/10.1152/jn.01171.2003. Dataset can be accessed through a response to the corresponding author.3. Spatio-temporal stimuli: Jonathan W. Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M. Litke, E. J. Chichilnisky & Eero P. Simoncelli (2008). "Spatio-temporal correlations and visual signalling in a complete neuronal population." https://doi.org/10.1038/nature07140. Dataset can be accessed through a response to the corresponding author.

Article and author information

Author details

  1. Kenneth W Latimer

    Department of Physiology and Biophysics, University of Washington, Seattle, United States
    For correspondence
    latimerk@uchicago.edu
    Competing interests
    No competing interests declared.
  2. Fred Rieke

    Department of Physiology and Biophysics, University of Washington, Seattle, United States
    Competing interests
    Fred Rieke, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1052-2609
  3. Jonathan W Pillow

    Princeton Neuroscience Institute, Department of Psychology, Princeton University, Princeton, United States
    For correspondence
    pillow@princeton.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3638-8831

Funding

McKnight Foundation

  • Jonathan W Pillow

Simons Foundation (SCGB AWD1004351)

  • Jonathan W Pillow

National Science Foundation (IIS-1150186)

  • Jonathan W Pillow

National Institute of Mental Health (MH099611)

  • Jonathan W Pillow

Howard Hughes Medical Institute

  • Fred Rieke

National Institutes of Health (EY011850)

  • Fred Rieke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephanie Palmer, University of Chicago, United States

Ethics

Animal experimentation: Tissue was obtained via the tissue distribution program at the Washington National Primate Research Center. All animal procedures were performed in accordance with IACUC protocols at the University of Washington (IACUC protocol number 4277-01).

Version history

  1. Received: March 22, 2019
  2. Accepted: December 17, 2019
  3. Accepted Manuscript published: December 18, 2019 (version 1)
  4. Version of Record published: January 29, 2020 (version 2)

Copyright

© 2019, Latimer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,133
    views
  • 341
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kenneth W Latimer
  2. Fred Rieke
  3. Jonathan W Pillow
(2019)
Inferring synaptic inputs from spikes with a conductance-based neural encoding model
eLife 8:e47012.
https://doi.org/10.7554/eLife.47012

Share this article

https://doi.org/10.7554/eLife.47012

Further reading

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.

    1. Neuroscience
    Baiwei Liu, Zampeta-Sofia Alexopoulou, Freek van Ede
    Research Article

    Working memory enables us to bridge past sensory information to upcoming future behaviour. Accordingly, by its very nature, working memory is concerned with two components: the past and the future. Yet, in conventional laboratory tasks, these two components are often conflated, such as when sensory information in working memory is encoded and tested at the same location. We developed a task in which we dissociated the past (encoded location) and future (to-be-tested location) attributes of visual contents in working memory. This enabled us to independently track the utilisation of past and future memory attributes through gaze, as observed during mnemonic selection. Our results reveal the joint consideration of past and future locations. This was prevalent even at the single-trial level of individual saccades that were jointly biased to the past and future. This uncovers the rich nature of working memory representations, whereby both past and future memory attributes are retained and can be accessed together when memory contents become relevant for behaviour.