TMEM16B regulates anxiety-related behavior and GABAergic neuronal signaling in the central lateral amygdala

  1. Ke-Xin Li
  2. Mu He
  3. Wenlei Ye
  4. Jeffrey Simms
  5. Michael Gill
  6. Xuaner Xiang
  7. Yuh Nung Jan
  8. Lily Yeh Jan  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Gladstone Institute of Neurological Disease, United States

Abstract

TMEM16B (ANO2) is the Ca2+-activated chloride channel expressed in multiple brain regions, including the amygdala. Here we report that Ano2 knockout mice exhibit impaired anxiety-related behaviors and context-independent fear memory, thus implicating TMEM16B in anxiety modulation. We found that TMEM16B is expressed in somatostatin-positive (SOM+) GABAergic neurons of the central lateral amygdala (CeL), and its activity modulates action potential duration and inhibitory postsynaptic current (IPSC). We further provide evidence for TMEM16B actions not only in the soma but also in the presynaptic nerve terminals of GABAergic neurons. Our study reveals an intriguing role for TMEM16B in context-independent but not context-dependent fear memory, and supports the notion that dysfunction of the amygdala contributes to anxiety-related behaviors.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Ke-Xin Li

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mu He

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wenlei Ye

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4694-1493
  4. Jeffrey Simms

    Gladstone Institute of Neurological Disease, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Gill

    Gladstone Institute of Neurological Disease, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xuaner Xiang

    Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuh Nung Jan

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1367-6299
  8. Lily Yeh Jan

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    For correspondence
    Lily.Jan@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3938-8498

Funding

National Institute for Health Research (RO1 NS069229)

  • Lily Yeh Jan

Eunice Kennedy Shriver National Institute of Child Health and Human Development (F32HD089639)

  • Mu He

Howard Hughes Medical Institute

  • Yuh Nung Jan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lisa M Monteggia, Vanderbilt University, United States

Ethics

Animal experimentation: The use and care of the mice complied with the guidelines of the Institutional Animal Care and Use Committee of UCSF (IACUC protocol AN181236), in accordance with the US National Institute of Health guidelines.

Version history

  1. Received: March 24, 2019
  2. Accepted: September 4, 2019
  3. Accepted Manuscript published: September 4, 2019 (version 1)
  4. Version of Record published: September 16, 2019 (version 2)

Copyright

© 2019, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,336
    views
  • 283
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ke-Xin Li
  2. Mu He
  3. Wenlei Ye
  4. Jeffrey Simms
  5. Michael Gill
  6. Xuaner Xiang
  7. Yuh Nung Jan
  8. Lily Yeh Jan
(2019)
TMEM16B regulates anxiety-related behavior and GABAergic neuronal signaling in the central lateral amygdala
eLife 8:e47106.
https://doi.org/10.7554/eLife.47106

Share this article

https://doi.org/10.7554/eLife.47106

Further reading

    1. Neuroscience
    Juan Jose Rodriguez Gotor, Kashif Mahfooz ... John F Wesseling
    Research Article

    Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.