Independent representations of ipsilateral and contralateral limbs in primary motor cortex

Abstract

Several lines of research demonstrate that primary motor cortex (M1) is principally involved in controlling the contralateral side of the body. However, M1 activity has been correlated with both contralateral and ipsilateral limb movements. Why does ipsilaterally-related activity not cause contralateral motor output? To address this question, we trained monkeys to counter mechanical loads applied to their right and left limbs. We found >50% of M1 neurons had load-related activity for both limbs. Contralateral loads evoked changes in activity ~10ms sooner than ipsilateral loads. We also found corresponding population activities were distinct, with contralateral activity residing in a subspace that was orthogonal to the ipsilateral activity. Thus, neural responses for the contralateral limb can be extracted without interference from the activity for the ipsilateral limb, and vice versa. Our results show that M1 activity unrelated to downstream motor targets can be segregated from activity related to the downstream motor output.

Data availability

Neural and kinematic data have been submitted to the Dryad repository and can be accessed at https://dx.doi.org/10.5061/dryad.06nr12f

The following data sets were generated

Article and author information

Author details

  1. Ethan A Heming

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    Competing interests
    No competing interests declared.
  2. Kevin P Cross

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    For correspondence
    13kc18@queensu.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9820-1043
  3. Tomohiko Takei

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6429-5798
  4. Douglas J Cook

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    Competing interests
    No competing interests declared.
  5. Stephen H Scott

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    Competing interests
    Stephen H Scott, Co-founder and chief scientific officer of Kinarm which commercializes the robot used in the study.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8821-1843

Funding

Canadian Institutes of Health Research (CIHR MOP 84403)

  • Stephen H Scott

Canadian Institutes of Health Research (CIHR PJT 153445)

  • Stephen H Scott

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jörn Diedrichsen, University of Western Ontario, Canada

Ethics

Animal experimentation: Studies were approved by the Queen's University Research Ethics Board and Animal Care Committee (#Scott-2010-035).

Version history

  1. Received: May 3, 2019
  2. Accepted: October 17, 2019
  3. Accepted Manuscript published: October 18, 2019 (version 1)
  4. Version of Record published: November 1, 2019 (version 2)

Copyright

© 2019, Heming et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,282
    views
  • 354
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ethan A Heming
  2. Kevin P Cross
  3. Tomohiko Takei
  4. Douglas J Cook
  5. Stephen H Scott
(2019)
Independent representations of ipsilateral and contralateral limbs in primary motor cortex
eLife 8:e48190.
https://doi.org/10.7554/eLife.48190

Share this article

https://doi.org/10.7554/eLife.48190

Further reading

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.

    1. Neuroscience
    Baiwei Liu, Zampeta-Sofia Alexopoulou, Freek van Ede
    Research Article

    Working memory enables us to bridge past sensory information to upcoming future behaviour. Accordingly, by its very nature, working memory is concerned with two components: the past and the future. Yet, in conventional laboratory tasks, these two components are often conflated, such as when sensory information in working memory is encoded and tested at the same location. We developed a task in which we dissociated the past (encoded location) and future (to-be-tested location) attributes of visual contents in working memory. This enabled us to independently track the utilisation of past and future memory attributes through gaze, as observed during mnemonic selection. Our results reveal the joint consideration of past and future locations. This was prevalent even at the single-trial level of individual saccades that were jointly biased to the past and future. This uncovers the rich nature of working memory representations, whereby both past and future memory attributes are retained and can be accessed together when memory contents become relevant for behaviour.