Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo

  1. King Faisal Yambire
  2. Christine Rostosky
  3. Takashi Watanabe
  4. David Pacheu-Grau
  5. Sylvia Torres-Odio
  6. Angela Sanchez-Guerrero
  7. Ola Senderovich
  8. Esther G Meyron-Holtz
  9. Ira Milosevic
  10. Jens Frahm
  11. A Phillip West
  12. Nuno Raimundo  Is a corresponding author
  1. University Medical Center Göttingen, Germany
  2. European Neuroscience Institute, Germany
  3. Max-Planck Institute for Biophysical Chemistry, Germany
  4. Texas A&M University Health Science Center, United States
  5. Technion Israel Institute of Technology, Israel

Abstract

Lysosomal acidification is a key feature of healthy cells. Inability to maintain lysosomal acidic pH is associated with aging and neurodegenerative diseases. However, the mechanisms elicited by impaired lysosomal acidification remain poorly understood. We show here that inhibition of lysosomal acidification triggers cellular iron deficiency, which results in impaired mitochondrial function and non-apoptotic cell death. These effects are recovered by supplying iron via a lysosome-independent pathway. Notably, iron deficiency is sufficient to trigger inflammatory signaling in cultured primary neurons. Using a mouse model of impaired lysosomal acidification, we observed a robust iron deficiency response in the brain, verified by in vivo magnetic resonance imaging. Furthermore, the brains of these mice present a pervasive inflammatory signature associated with instability of mitochondrial DNA (mtDNA), both corrected by supplementation of the mice diet with iron. Our results highlight a novel mechanism linking impaired lysosomal acidification, mitochondrial malfunction and inflammation in vivo.

Data availability

We generated RNAseq data from brain of mice (WT and KO), which is deposited in Gene Expression Omnibus under the serial number Series GSE134704.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. King Faisal Yambire

    Institute of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Christine Rostosky

    Synaptic Vesicle Recycling, European Neuroscience Institute, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Takashi Watanabe

    Biomedizinische NMR, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. David Pacheu-Grau

    Institute of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Sylvia Torres-Odio

    Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Angela Sanchez-Guerrero

    Institute of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Ola Senderovich

    Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Esther G Meyron-Holtz

    Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Ira Milosevic

    Synaptic Vesicle Recycling, European Neuroscience Institute, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6440-3763
  10. Jens Frahm

    Biomedizinische NMR, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8279-884X
  11. A Phillip West

    Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Nuno Raimundo

    Institute of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
    For correspondence
    nuno.raimundo@med.uni-goettingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5988-9129

Funding

H2020 European Research Council (337327)

  • Nuno Raimundo

Deutsche Forschungsgemeinschaft (SFB1190-P02)

  • Ira Milosevic
  • Nuno Raimundo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Suzanne R Pfeffer, Stanford University School of Medicine, United States

Ethics

Animal experimentation: The experiments were performed under the permit 15-883 by the authority for animal research in Lower Saxony, Germany (LAVES).

Version history

  1. Received: August 12, 2019
  2. Accepted: December 2, 2019
  3. Accepted Manuscript published: December 3, 2019 (version 1)
  4. Version of Record published: December 17, 2019 (version 2)

Copyright

© 2019, Yambire et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,863
    views
  • 1,683
    downloads
  • 142
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. King Faisal Yambire
  2. Christine Rostosky
  3. Takashi Watanabe
  4. David Pacheu-Grau
  5. Sylvia Torres-Odio
  6. Angela Sanchez-Guerrero
  7. Ola Senderovich
  8. Esther G Meyron-Holtz
  9. Ira Milosevic
  10. Jens Frahm
  11. A Phillip West
  12. Nuno Raimundo
(2019)
Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo
eLife 8:e51031.
https://doi.org/10.7554/eLife.51031

Share this article

https://doi.org/10.7554/eLife.51031

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.