Misfolded proteins bind and activate death receptor 5 to induce apoptosis during unresolved endoplasmic reticulum stress

  1. Mable Lam
  2. Scot A Marsters
  3. Avi Ashkenazi  Is a corresponding author
  4. Peter Walter  Is a corresponding author
  1. Howard Hughes Medical Institute , University of California, San Francisco, United States
  2. Genentech, Inc, United States

Abstract

Disruption of protein folding in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR)—a signaling network that ultimately determines cell fate. Initially, UPR signaling aims at cytoprotection and restoration of ER homeostasis; that failing, it drives apoptotic cell death. ER stress initiates apoptosis through intracellular activation of death receptor 5 (DR5) independent of its canonical extracellular ligand TRAIL; however, the mechanism underlying DR5 activation is unknown. In cultured human cells, we find that misfolded proteins can directly engage with DR5 in the ER-Golgi intermediate compartment, where DR5 assembles pro-apoptotic caspase 8-activating complexes. Moreover, peptides used as a proxy for exposed misfolded protein chains selectively bind to the purified DR5 ectodomain and induce its oligomerization. These findings indicate that misfolded proteins can act as ligands to activate DR5 intracellularly and promote apoptosis. We propose a model in which cells use DR5 as a terminal protein-folding checkpoint before committing to a terminal apoptotic fate.

Data availability

All data have been reported in the manuscript and supporting files. Source data files have been provided in all figures.

Article and author information

Author details

  1. Mable Lam

    Department of Biochemistry and Biophysics, Howard Hughes Medical Institute , University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7016-2257
  2. Scot A Marsters

    Cancer Immunology, Genentech, Inc, South San Francisco, United States
    Competing interests
    Scot A Marsters, is affiliated with Genentech Inc. The author has no other competing interests to declare.
  3. Avi Ashkenazi

    Cancer Immunology, Genentech, Inc, South San Francisco, United States
    For correspondence
    ashkenazi.avi@gene.com
    Competing interests
    Avi Ashkenazi, is affiliated with Genentech Inc. The author has no other competing interests to declare.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6890-4589
  4. Peter Walter

    Department of Biochemistry and Biophysics, Howard Hughes Medical Institute , University of California, San Francisco, San Francisco, United States
    For correspondence
    peter@walterlab.ucsf.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6849-708X

Funding

National Science Foundation (Graduate Research Fellowship)

  • Mable Lam

Howard Hughes Medical Institute

  • Peter Walter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. D Thomas Rutkowski, University of Iowa Carver College of Medicine, United States

Version history

  1. Received: September 28, 2019
  2. Accepted: January 3, 2020
  3. Accepted Manuscript published: January 6, 2020 (version 1)
  4. Version of Record published: February 25, 2020 (version 2)

Copyright

© 2020, Lam et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,608
    views
  • 1,027
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mable Lam
  2. Scot A Marsters
  3. Avi Ashkenazi
  4. Peter Walter
(2020)
Misfolded proteins bind and activate death receptor 5 to induce apoptosis during unresolved endoplasmic reticulum stress
eLife 9:e52291.
https://doi.org/10.7554/eLife.52291

Share this article

https://doi.org/10.7554/eLife.52291

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.