Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α

  1. Liku B Tezera  Is a corresponding author
  2. Magdalena K Bielecka
  3. Paul Ogongo
  4. Naomi F Walker
  5. Matthew Ellis
  6. Diana J Garay-Baquero
  7. Kristian Thomas
  8. Michaela T Reichmann
  9. David A Johnston
  10. Katalin Andrea Wilkinson
  11. Mohamed Ahmed
  12. Sanjay Jogai
  13. Suwan N Jayasinghe
  14. Robert J Wilkinson
  15. Salah Mansour
  16. Gareth J Thomas
  17. Christian H Ottensmeier
  18. Alasdair Leslie
  19. Paul T Elkington
  1. University of Southampton, United Kingdom
  2. Africa Health Research Institute, South Africa
  3. Liverpool School of Tropical Medicine, United Kingdom
  4. The Francis Crick Institute, United Kingdom
  5. African Health Research Institute, South Africa
  6. University College London, United Kingdom

Abstract

Previously, we developed a 3-dimensional cell culture model of human tuberculosis (TB) and demonstrated its potential to interrogate the host-pathogen interaction (Tezera et al, 2017). Here, we use the model to investigate mechanisms whereby immune checkpoint therapy for cancer paradoxically activates TB infection. In patients, PD-1 is expressed in Mycobacterium tuberculosis (Mtb)-infected lung tissue but absent in areas of immunopathology. In the microsphere model, PD-1 ligands are up-regulated by infection, and the PD-1/PD-L1 axis is further induced by hypoxia. Inhibition of PD-1 signalling increases Mtb growth, and augments cytokine secretion. TNF-α is responsible for accelerated Mtb growth, and TNF-α neutralisation reverses augmented Mtb growth caused by anti-PD-1 treatment. In human TB, pulmonary TNF-α immunoreactivity is increased and circulating PD-1 expression negatively correlates with sputum TNF-α concentrations. Together, our findings demonstrate that PD-1 regulates the immune response in TB, and inhibition of PD-1 accelerates Mtb growth via excessive TNF-α secretion.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for for all figures as a data resource file

Article and author information

Author details

  1. Liku B Tezera

    NIHR Respiratory Biomedical Research Unit, University of Southampton, Southampton, United Kingdom
    For correspondence
    l.tezera@soton.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7898-6709
  2. Magdalena K Bielecka

    NIHR Respiratory Biomedical Research Unit, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul Ogongo

    Laboratory Science, Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0093-5768
  4. Naomi F Walker

    Medicine, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew Ellis

    Medicine, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Diana J Garay-Baquero

    Medicine, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9450-8504
  7. Kristian Thomas

    Medicine, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Michaela T Reichmann

    Faculty of Medicine, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6714-8400
  9. David A Johnston

    Medicine, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Katalin Andrea Wilkinson

    Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9796-2040
  11. Mohamed Ahmed

    African Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  12. Sanjay Jogai

    NIHR Respiratory Biomedical Research Unit, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Suwan N Jayasinghe

    BioPhysics Group, UCL Institute of Biomedical Engineering, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Robert J Wilkinson

    Tuberculosis laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Salah Mansour

    NIHR Respiratory Biomedical Research Unit, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5982-734X
  16. Gareth J Thomas

    Cancer Immunology, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3832-7335
  17. Christian H Ottensmeier

    CRUK and NIHR Experimental Cancer Medicine Center, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3619-1657
  18. Alasdair Leslie

    African Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  19. Paul T Elkington

    NIHR Respiratory Biomedical Research Unit, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0390-0613

Funding

Medical Research Council (MR/P023754/1)

  • Paul T Elkington

Medical Research Council (MR/N006631/1)

  • Paul T Elkington

Wessex Medical Research (Innovation Grant 2017)

  • Liku B Tezera

Wellcome Trust (210662/Z/18/Z)

  • Alasdair Leslie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bree Aldridge, Tufts University School of Medicine, United States

Ethics

Human subjects: All ethical approvals were in place from the appropriate regulatory organisations in both the UK and South Africa, as cited in the methods

Version history

  1. Received: October 17, 2019
  2. Accepted: February 19, 2020
  3. Accepted Manuscript published: February 24, 2020 (version 1)
  4. Version of Record published: March 5, 2020 (version 2)

Copyright

© 2020, Tezera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,426
    views
  • 684
    downloads
  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Liku B Tezera
  2. Magdalena K Bielecka
  3. Paul Ogongo
  4. Naomi F Walker
  5. Matthew Ellis
  6. Diana J Garay-Baquero
  7. Kristian Thomas
  8. Michaela T Reichmann
  9. David A Johnston
  10. Katalin Andrea Wilkinson
  11. Mohamed Ahmed
  12. Sanjay Jogai
  13. Suwan N Jayasinghe
  14. Robert J Wilkinson
  15. Salah Mansour
  16. Gareth J Thomas
  17. Christian H Ottensmeier
  18. Alasdair Leslie
  19. Paul T Elkington
(2020)
Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α
eLife 9:e52668.
https://doi.org/10.7554/eLife.52668

Share this article

https://doi.org/10.7554/eLife.52668

Further reading

    1. Immunology and Inflammation
    Phillip A Erice, Xinyan Huang ... Antony Rodriguez
    Research Article

    Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.

    1. Immunology and Inflammation
    Xiuyuan Lu, Hiroki Hayashi ... Sho Yamasaki
    Research Article

    SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic. To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) αβ sequences and mRNA expression of the S-responded T cells were investigated using single-cell TCR- and RNA-sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs. Among them, we could determine 78 S epitopes, most of which were conserved in variants of concern (VOCs). After the 2nd vaccination, T cell clonotypes highly responsive to recall S stimulation were polarized to follicular helper T (Tfh)-like cells in donors exhibiting sustained anti-S antibody titers (designated as ‘sustainers’), but not in ‘decliners’. Even before vaccination, S-reactive CD4+ T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic microbes. However, these clonotypes contracted after vaccination. Conversely, S-reactive clonotypes dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that highly responding S-reactive T cells were established by vaccination from rare clonotypes. These results suggest that de novo acquisition of memory Tfh-like cells upon vaccination may contribute to the longevity of anti-S antibody titers.