Kinesin Kif2C in regulation of DNA double strand break dynamics and repair

  1. Songli Zhu
  2. Mohammadjavad Paydar
  3. Feifei Wang
  4. Yanqiu Li
  5. Ling Wang
  6. Benoit Barrette
  7. Tadayoshi Bessho
  8. Benjamin H Kwok  Is a corresponding author
  9. Aimin Peng  Is a corresponding author
  1. University of Nebraska Medical Center, United States
  2. Université de Montréal, Canada

Abstract

DNA double strand breaks (DSBs) have detrimental effects on cell survival and genomic stability, and are related to cancer and other human diseases. In this study, we identified microtubule-depolymerizing kinesin Kif2C as a protein associated with DSB-mimicking DNA templates and known DSB repair proteins in Xenopus egg extracts and mammalian cells. The recruitment of Kif2C to DNA damage sites was dependent on both PARP and ATM activities. Kif2C knockdown or knockout led to accumulation of endogenous DNA damage, DNA damage hypersensitivity, and reduced DSB repair via both NHEJ and HR. Interestingly, Kif2C depletion, or inhibition of its microtubule depolymerase activity, reduced the mobility of DSBs, impaired the formation of DNA damage foci, and decreased the occurrence of foci fusion and resolution. Taken together, our study established Kif2C as a new player of the DNA damage response, and presented a new mechanism that governs DSB dynamics and repair.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Songli Zhu

    Department of Oral Biology, University of Nebraska Medical Center, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mohammadjavad Paydar

    Département de médecine, Université de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0569-7017
  3. Feifei Wang

    Department of Oral Biology, University of Nebraska Medical Center, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yanqiu Li

    Department of Oral Biology, University of Nebraska Medical Center, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ling Wang

    Department of Oral Biology, University of Nebraska Medical Center, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Benoit Barrette

    Département de médecine, Université de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Tadayoshi Bessho

    Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8719-9646
  8. Benjamin H Kwok

    Département de médecine, Université de Montréal, Montréal, Canada
    For correspondence
    benjamin.kwok@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  9. Aimin Peng

    Department of Oral Biology, University of Nebraska Medical Center, Lincoln, United States
    For correspondence
    aimin.peng@unmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2452-1949

Funding

National Institutes of Health (CA172574)

  • Aimin Peng

Canadian Institutes of Health Research (148982)

  • Benjamin H Kwok

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wolf-Dietrich Heyer, University of California, Davis, United States

Version history

  1. Received: November 7, 2019
  2. Accepted: January 16, 2020
  3. Accepted Manuscript published: January 17, 2020 (version 1)
  4. Accepted Manuscript updated: January 21, 2020 (version 2)
  5. Version of Record published: February 11, 2020 (version 3)

Copyright

© 2020, Zhu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,875
    views
  • 580
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Songli Zhu
  2. Mohammadjavad Paydar
  3. Feifei Wang
  4. Yanqiu Li
  5. Ling Wang
  6. Benoit Barrette
  7. Tadayoshi Bessho
  8. Benjamin H Kwok
  9. Aimin Peng
(2020)
Kinesin Kif2C in regulation of DNA double strand break dynamics and repair
eLife 9:e53402.
https://doi.org/10.7554/eLife.53402

Share this article

https://doi.org/10.7554/eLife.53402

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.